
NATIONAL ENERGY TECHNOLOGY LABORATORY

U.S. DEPARTMENT

Materials and Device Research for Electrical System Applications at the National Energy Technology Laboratory

Dr. Paul R. Ohodnicki, Jr.

Functional Materials Team

Materials Engineering & Manufacturing Directorate

NETL Research & Innovation Center (RIC)

Relevant Research Focus Areas in R&IC

- Emerging Trends Driving R&D Opportunities in the Area of Grid Modernization
- Material and Device Development for System Level Impacts
 - Active Focus Areas within R&IC
 - Recent NETL Funded Initiatives within the GMLC
- Nanocomposite Soft Magnets and HF Transformers for Grid Integration
 - Project Overview
 - Strategic Technical Thrusts
 - Magnetic Alloy and Manufacturing Development (NETL, CMU, and NASA)
 - Transformer Design and Manufacturing (NCSU and Eaton)
 - Power Electronics and Systems Level Design (NCSU and Eaton)
- Optical Fiber Based Sensing for Asset Monitoring in Power Transformers
 - Project Overview
 - Early Results and Proposed Targets
- Summary and Conclusions

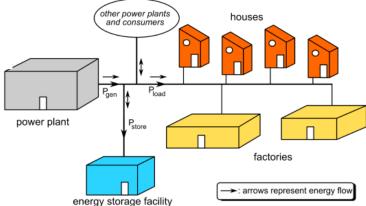
Emerging Trends and Technical Needs in the T&D System

Changing Mix of Types and Characteristics of Electricity Generation

Growing Demands for a more Resilient and Reliable Grid for Weather and Cyber / Physical Attacks

Growing Supply and Demand Side Opportunities for Consumers to Actively Participate in Electricity Markets

Aging Electricity Infrastructure Presenting Opportunities and Challenges



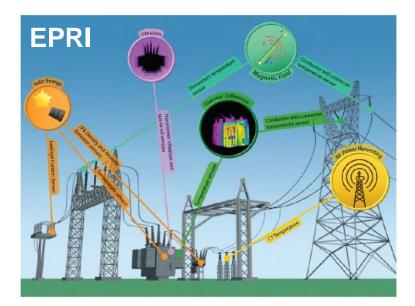
Through the Recently Announced Grid Modernization Initiative and the Grid Modernization Laboratory Consortium, DOE Has Placed Grid Modernization at a High Priority.

NATIONAL ENERGY TECHNOLOGY LABORATORY

http://gridmodernization.labworks.org/about

Urgent New Technology Development Needs Required

Grid-Scale Energy Storage Devices

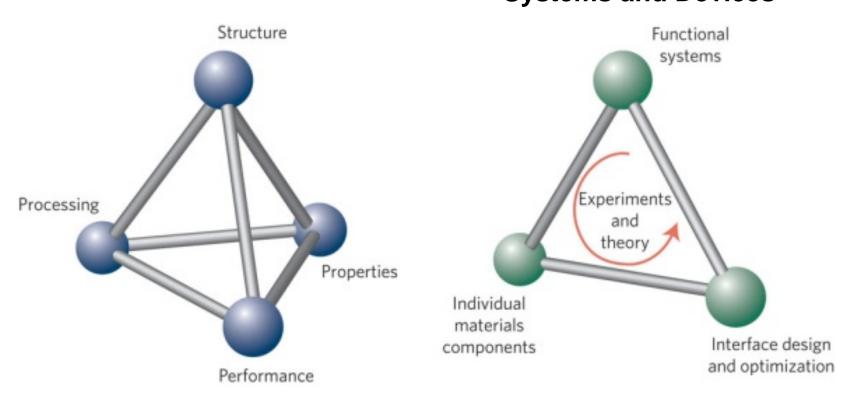

"The task of power electronics is to process and control the flow of electric energy by supplying voltages and currents in a form that is optimally suited to the load."

Power Electronics Converters

(Grid Integration, Power Flow Control, HVDC, and Power Conversion)

Sensors and Controls

Technological Advances Are Required

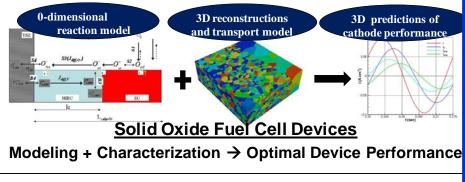

Functional Materials Enable

Revolutionary Advances in Devices

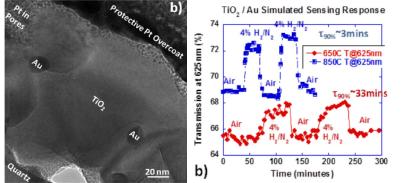
Functional Material Development for Devices and Systems

Classic Materials Science Paradigm

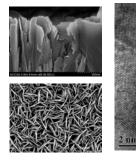
Emerging Paradigm Materials Interface with Functional Systems and Devices

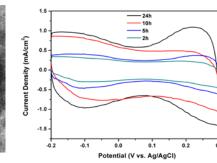


Materials Research Targeted at Device and System Level Benefits

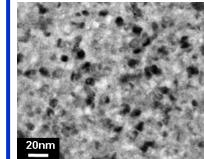

Materials and Device Focus : Functional Material Team

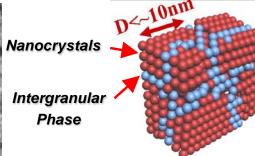
Current Fiscal Year 2017


Solid Oxide Fuel Cell Materials / Devices Function and Durability


Current Fiscal Year 2017

Sensor Materials / Devices Chemical and Temperature Sensing


Not Currently Active



Energy Storage Materials / Devices Enhanced Performance

Current Fiscal Year 2017

Soft Magnetic Materials / Devices Inductors and Sensors

NATIONAL ENERGY TECHNOLOGY LABORATORY

DOE Lab Call for Grid Modernization Research

Announced in January of 2016

Project #1: DOE EERE Solar Energy Technology Office (NETL Led)

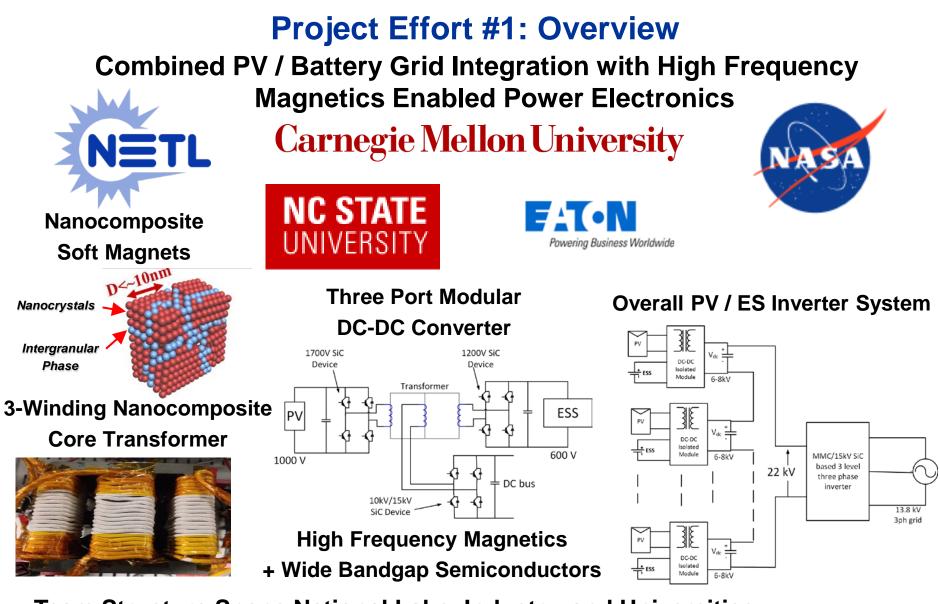
Project 2: Combined PV/Battery
Grid Integration with High
Frequency Magnetics Enabled
Power Electronics

Advanced DC-DC and DC-AC converter-based integrated modules and associated systems architectures and topologies will be developed for 13.8kV, 60Hz direct grid connection using SiC devices. In parallel, advanced magnetic cores and high frequency (HF) transformers built upon them will be developed to enable DC-DC and DC-AC converters with energy storage (ES) that serve as the building blocks for the proposed technologies. System architecture studies informed by market driven technical requirements will also be performed to provide guidance for the on-going R&D activities throughout.

NETL	NC State University,	\$4M
	Eaton, Carnegie	proposed
	Mellon University,	over three
	NASA	years

Project #2: DOE OE / BTO (NETL Partner)

Project 19: Advanced Sensor	Increase visibility throughout the energy system including transmission,	ORNL, PNNL,	EPRI, University of Tennessee, Southern Co, EPB,	\$6M over
Development	distribution, and end-use by developing low-cost, accurate sensors. Additionally,	NETL, NREL,	Entergy, Eaton, SmartSense, National Instruments,	three years
	next generation asset monitoring devices will help determine state of grid	SNL, LBNL	Dominion, TVA, CommEd, NASPI	
	components prior to failure.			

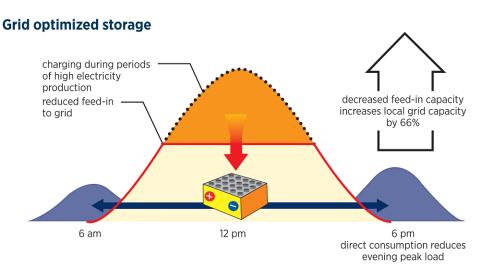

NETL was Successfully Awarded 2 Relevant Project Proposals Under the DOE GMLC Lab Call for Proposals in the Areas of Power Electronics and Sensor Development

NATIONAL ENERGY TECHNOLOGY LABORATORY

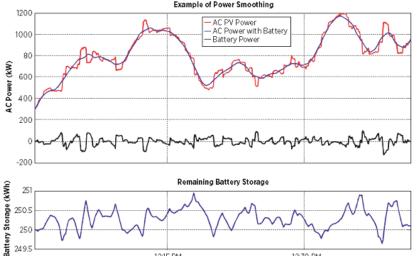
http://energy.gov/doe-grid-modernization-laboratory-consortium-gmlc-awards

Nanocomposite Soft Magnets and High Frequency Transformers for Grid Integration

«#>


- Team Structure Spans National Labs, Industry, and Universities
- Modular MW-Scale Inverter for Combined Photovoltaic and Energy Storage

NATIONAL ENERGY TECHNOLOGY LABORATORY


What are Advantages of Combined PV and Energy Storage?

Time-Shifting of Electricity Production through PV

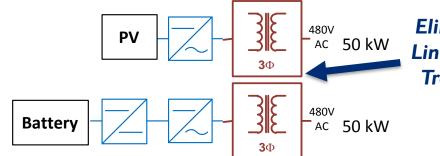
Smoothing of Power Fluctuations for Instantaneous Production

- → Reduced Cost and/or Increased Value of Electricity Production
 - \rightarrow Reduced Requirements for **Baseload Fossil Plant Cycling**

 \rightarrow Local Factors (i.e. Clouds) Result in Sharp Time Variations in PV Power

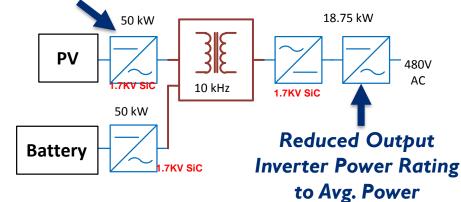
12:30 PM

12:15 PM


→ Increased Reliability of PV **Generated Electrical Power**

Combining PV with Energy Storage Allows for Improved Management of Variability in PV Generation

249.5


Why Use a Multi-Winding High Frequency Transformer?

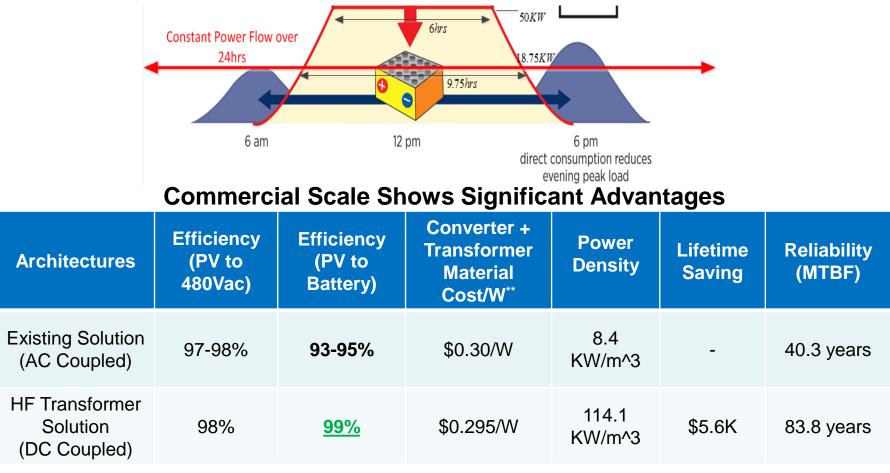
Conventional Solution

Multi-Winding HF Transformer Based Solution

Commercially Available SiC-Devices

Elimination of Line Frequency Transformers

60Hz vs 20kHz

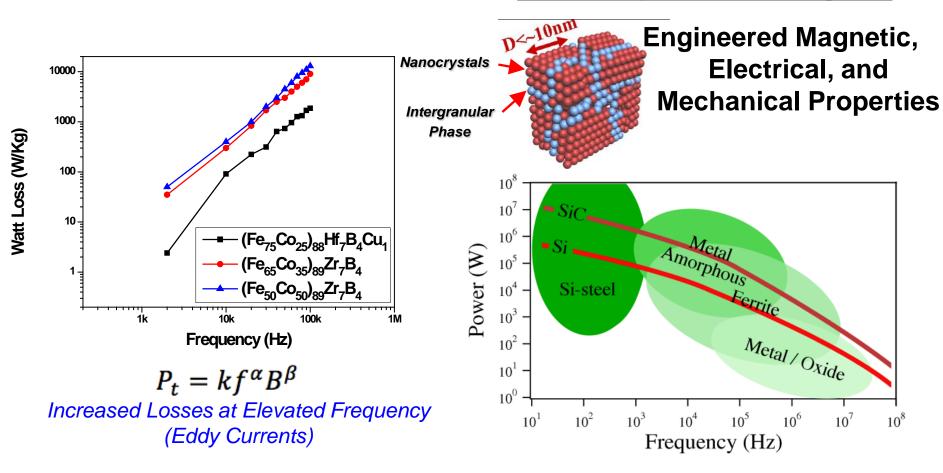


330kVA 60Hz Transformer250kVA 20kHz Transformer55" high and 2700Lb16" high and 75Lb

15kV Class > 1MVA Transformer Frequency	Fx to 60Hz Ratio	Transformer Core Mass Reduction Factor	Transformer Core Volume Reduction Factor
60Hz	1	1	1
400Hz	7	8	1.4
1kHz	17	10	1.7
20kHz	333	68	34
50kHz	833	82	34

Increased Power Density and Potential for Higher Efficiency Energy Storage Charging / Discharging

Architecture Studies to Understand Costs and Benefits



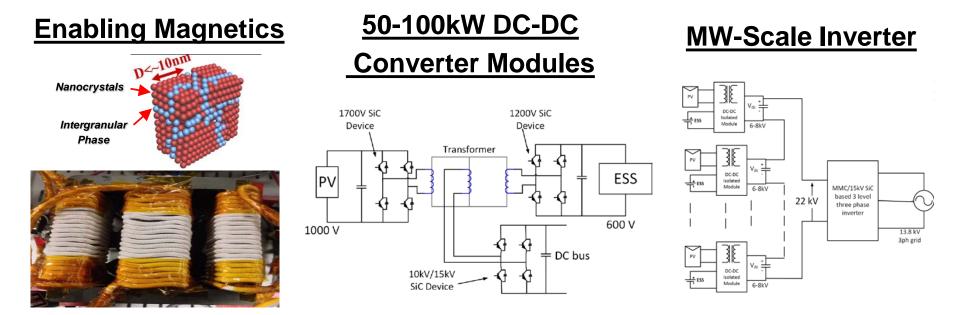
- Higher Efficiency Energy Storage Charging / Discharging
 - >10x Increase in Power Density
 - >2x Increase in Reliability
- Cost Competitive with Significant Return on Investment

NATIONAL ENERGY TECHNOLOGY LABORATORY

Why Use Advanced Soft Magnetic Materials?

Nanocomposite Soft Magnets

Higher Frequencies and Novel Power Electronics / Transformer Designs Increase Needs for New Soft Magnets


High-Level Technical Project Objectives

Task 1: Technical Requirement Definition and System Architecture

Task 2: DC-DC Converter Module Design and Build

Task 3: Systems Integration Demonstrations

Task 4: Advanced Magnetics and High Frequency Transformer Technology

Project Goal: Solar Inverter Technology that Addresses

Performance Requirements and Cost Targets Relevant for

the DOE SunShot Initiative

NATIONAL ENERGY TECHNOLOGY LABORATORY

DOE SunShot Initiative SuNLaMP 01699

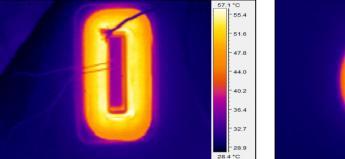
«#>

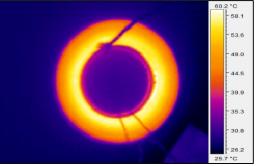
Research Focus Area #1 : Alloy Design and Magnetic Core Manufacturing Efforts

Previously Developed Alloys Under an ARPA-e Solar ADEPT Program are Being Modified for Advanced Processing and **Ease of Core Fabrication «#**>

ENERGY TECHNOLOGY LABORATORY

Research Focus Area #1: Alloy Design and Magnetic Core Manufacturing Efforts **Rapid Solidification Global and "Local" Permeability Engineering** Fe685Co5Si155Nb3B7Cu 0.0


Strain Annealing



Flux Density, T -0.5 -2 0 Drive Field, kA/m

Loss and Heat Management of Components

Key Emphasis #1 :

Advanced Processing Methodologies Involving Strain and Field Annealing for Permeability Engineering

ENESCY LECHNOLOGA L730571054

Research Focus Area #1 : Alloy Design and Magnetic Core Manufacturing Efforts

Glass Former Element Substitution Demonstrated Successful

Fe76.5-xMxCu1Si15.5B7

				At σ=200MP	2		At max str	000	Posistan	ce, μΩ*m						
Run	М	Bm, T	μ	Ku, kJ/m3	κu/σ	σ, MPa	μ	Ku, kJ/m3	As cast	200MPa		_ate				
19	Nb3 (HTX 012)	1.200	262	2.19	10.9	300	147	3.90	141	1.16						aida
21	Nb4	1.012	234	1.74	8.7	300	142	2.87	1.41	1.20	Tra	nsiti	on		Metall	0105
22	Nb5	1.057	349	1.27	6.4	200	349	1.27	1.43	1.31						
26	Nb6	0.959	255	1.44	7.2	300	133	2.75	1.46	1.29	N	letal	s 🖌			
37	Nb1.5 Mo1.5	1.214	221	2.65	13.3	300	148	3.96	1.37	1.09					_	~
32	Nb2 Mo2	1.045	171	2.54	12.7	500	50	8.69	1.39	1.12	40	4.4	40		5	6
33	Nb2.5 Mo2.5	1.043	193	2.24	11.2	500	60	7.21	1.41	1.16	40	41	42		В	C
24	Nb3 Mo3	0.947	215	1.66	9.3	400	88	4.05	1.44	1.20	Zr	Nb	Mo		D	C
59	Nb2 Mo2 Cr2	0.891	162	1.95	9.7	300	107	2.95	1.42	1.22					12	14
63	Nb2 Mo2 Ni1	1.184	250	2.23	11.2	200	250	2.23	1.40	1.16	72	73	74		13	14
66	Nb2 Mo2 Ni2	1.135	247	2.08	10.4	200	247	2.08	1.37	1.15	Hf	Та	W		A	Si
70	Nb2 Mo2 V1	0.922	202	1.67	8.4	200	202	1.67	1.47	1.23	111	IG	VV			51
77	Nb2 Mo2 V2	0.953	221	1.64	8.2	200	221	1.64	1.46				-			
74	Mh2 Mo2 W1	0.870	177	1 70	85	300	159	1.89	1 45	1 20	G	nee F	orm	or I	Flama	nte

Glass Former Elements

Early Transition Metals

26

Fe

27

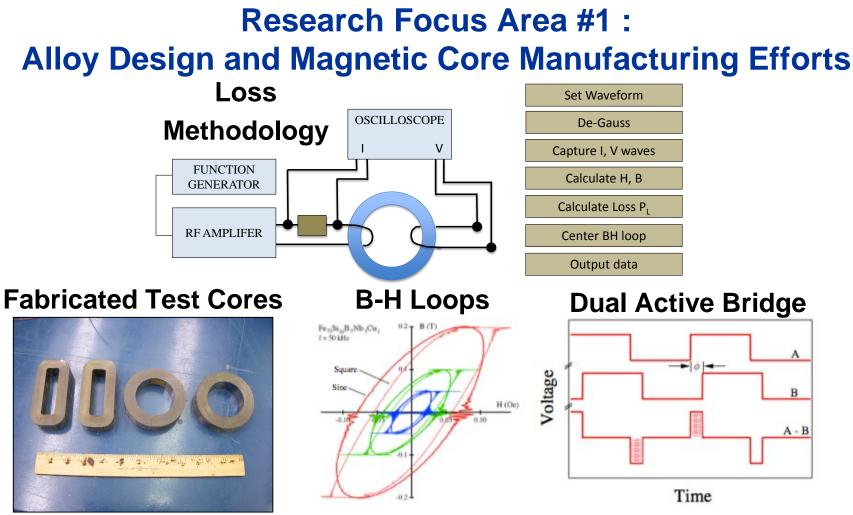
Co

25

Mn

24

Cr

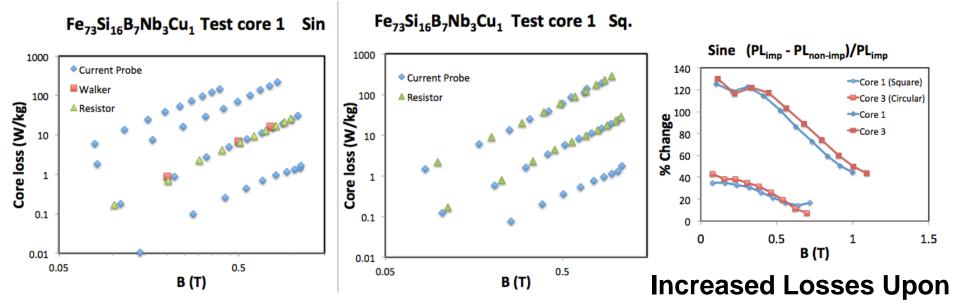

Ti

28

Ni

Key Emphasis #2 :

Improving Mechanical Properties of Low-Cost Fe-Based Alloys for Improved Core Manufacturability



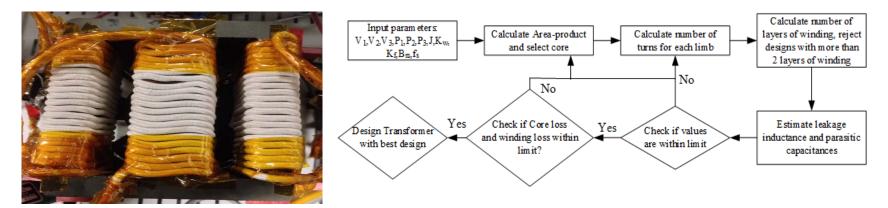
Key Emphasis #3 :

Application Relevant Loss Measurements to Enable Performance Testing of Fabricated Components

«#>

Research Focus Area #1 : Alloy Design and Magnetic Core Manufacturing Efforts

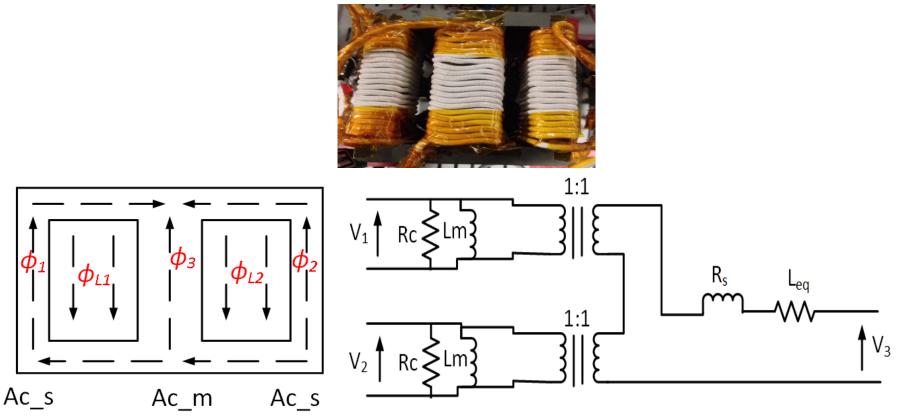
Consistent Methodology for Loss Measurements Core Impregnation Including Lower Square Wave Excitation Losses


«#>

Key Emphasis #3 :

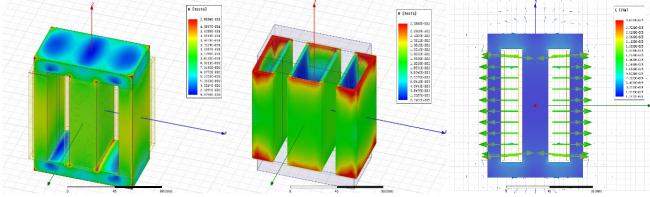
Application Relevant Loss Measurements to Enable Performance Testing of Fabricated Components

Research Focus Area #2 : Transformer Design and Modeling

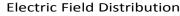


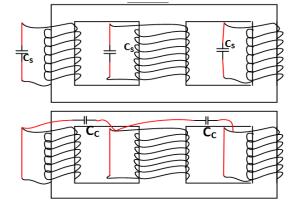
- Bm = 0.2T for ferrite core, 0.8T for nano crystalline
- Winding with Litz Wire
- Leakage Inductance and parasitic capacitance estimation using FEA simulation

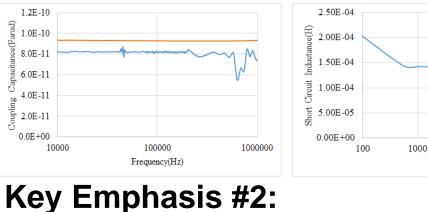
Transformer Designs are Being Developed for 3-Limb and 3-Winding Transformer Configurations


Research Focus Area #2 : Transformer Design and Modeling

Key Emphasis #1:


Developing Equivalent Electrical and Magnetic Circuit Models for 3-Winding and 3-Limb Transformers


Research Focus Area #2 : Transformer Design and Modeling



Core Field Distribution

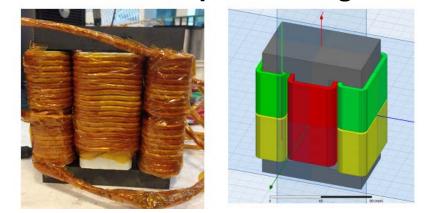
Winding Field Distribution

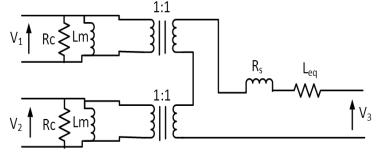
Estimating Various Transformer Design Parameters Including Leakage Inductance, Parasitic Capacitances Through Simulation and Experiment

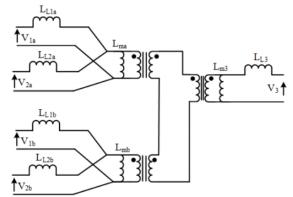
IAL ENERGY TECHNOLOGY LABORATORY

10000

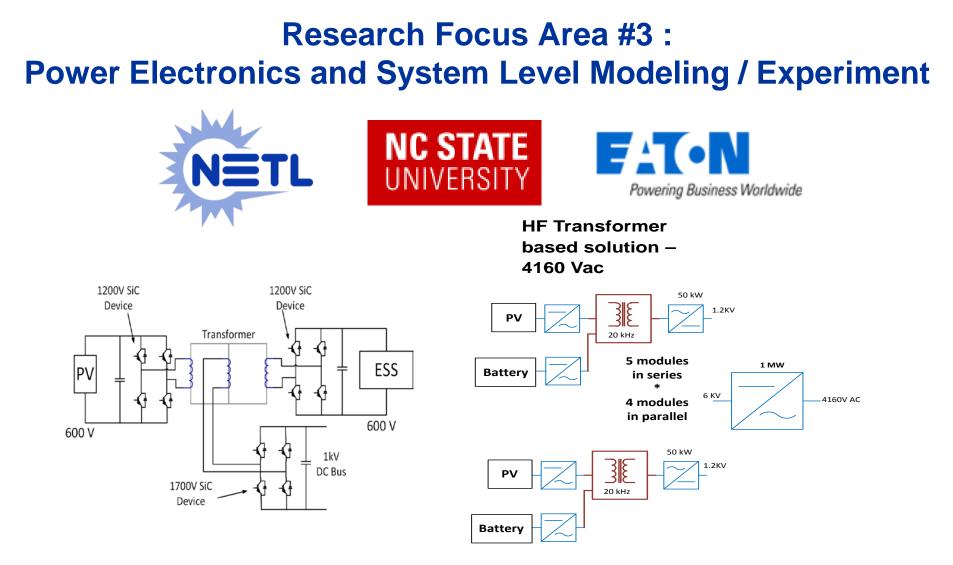
Frequency(Hz)


100000


1000000

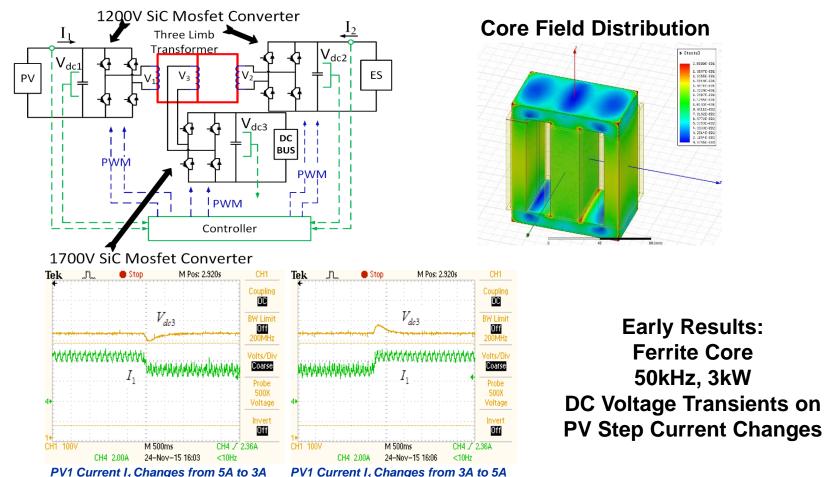

Research Focus Area #2 : Transformer Design and Modeling Single-Winding 3-Limb, Split-Winding

3-Limb, Single-Winding



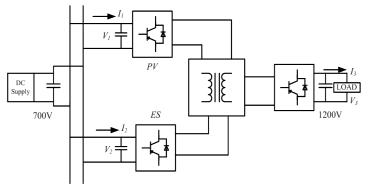
CHNOLOGY LABOSATOSA

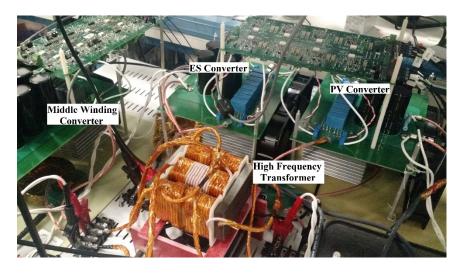
Key Emphasis #3:

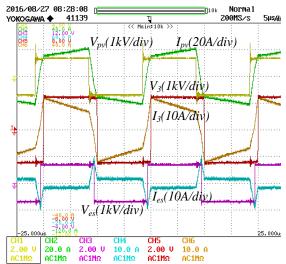

Core Material Selection and Geometry / Winding Designs to Achieve Targeted Transformer Parameters and Losses While Having Correct Power Flow for End-Use Cases

Power Electronics Designs and Systems Level Integration for Overall Converter Efficiency, Cost, and Performance

‹#>


Research Focus Area #3 : Power Electronics and System Level Modeling / Experiment


Preliminary Designs and Prototypes Have Been Demonstrated Capable of Maintaining Constant DC Bus at the Third Winding.


Research Focus Area #3 : Power Electronics and System Level Modeling / Experiment

	PV / ES Charging and Disch	New E
#1	PV Delivering Maximum Power	ES Charging from PV
#2	PV Delivering Maximum Power	ES Charging from Grid
#3	PV Delivering Maximum Power	ES Discharging to Grid
#4	PV Delivering Reduced (or Zero) Power	ES Charging from Grid
#5	PV Delivering Reduced (or Zero) Power	ES Discharging to Grid
#6	PV Delivering Maximum or	ES Idle (Not Charging or
#0	Reduced Power	Discharging)

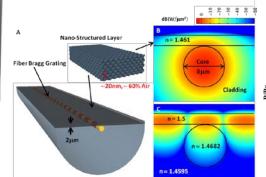
Successful Power Flow

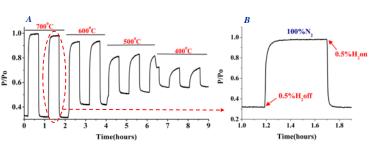
Early DC-DC Converter Prototypes at the 10kW Level Demonstrate Efficiencies of > 98% and Successful Power Flow in All Use Cases.

Optical Fiber Based Sensing for Asset Monitoring in Power Transformers

«#>

Project Effort #2: Overview


Low-Cost Optical Fiber Based Sensors for Multi-Parameter Asset Monitoring in Power Transformers



«#>

Dissolved Gas Analysis

Gas	as Normal		Abnormal	Interpretation
Acetylene	<15 ppm	>15 ppm and <70 ppm	<70 ppm	Arcing
Carbon Dioxide	< 10 000 ppm	>10000 ppm and <15000 ppm	>15000 ppm	Severe Overloading
Carbon Monoxide	< 500 ppm	>500 ppm and < 1000 ppm	>1000 ppm	Severe Overloading
Ethane	<10 ppm	>10 ppm and < 35 ppm	> 35 ppm	Local Overheating
Ethylene	<20 ppm	>20 ppm and <100 ppm	>100 ppm	Severe Overheating
Hydrogen	<150 ppm	>150 ppm and < 1000 ppm	>1000 ppm	Arcing, Corona
Methane	<25 ppm	>25 ppm and <80 ppm	>80 ppm	Sparking
Nitrogen	1-10%			Normal ageing
Oxygen	0.2 - 3.5%			Normal Ageing
Total Combustible Gases	< 720 ppm	>720 ppm and <5000 ppm	>5000 ppm	Total Combustible Gas Limit

Low-Cost and Multi-Parameter Sensors are Being Developed for Insulation Oil Monitoring in Power Transformer Applications

NATIONAL ENERGY TECHNOLOGY LABORATORY

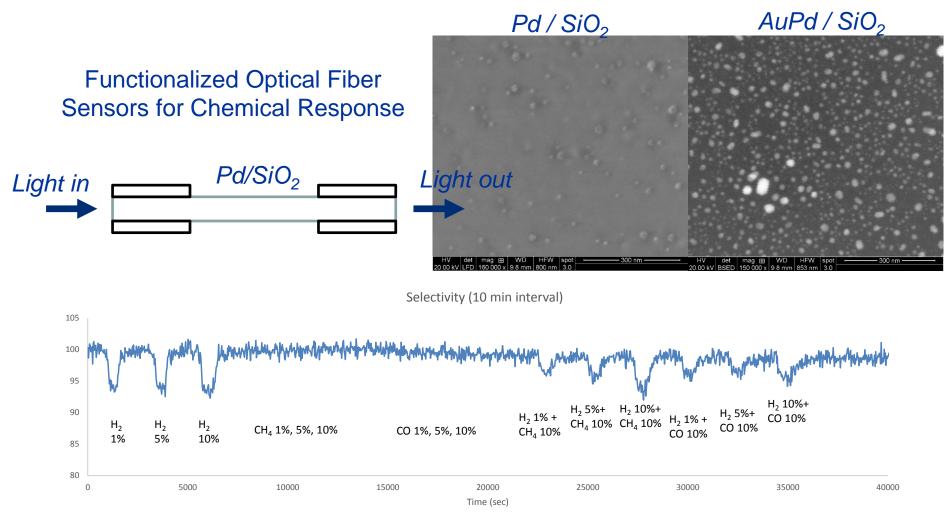
DOE GMLC OE / BTO

Characteristic Gases Depend on Fault Type

- □ Thermal faults: H₂, CH₄, C₂H₄, C₂H₆, C₂H₂, CO, CO₂
- □ Electrical faults—partial discharges: H₂, CH₄, C₂H₂
- Desired H₂ concentrations for sensing application: <100 ppm to >2000 ppm
- Good selectivity against interferences (hydrocarbons, CO)

	Dissolved key gas concentration limits [µL/L (ppm) ^a]								
Normal 👡	Status	Hydrogen (H2)	Methane (CH4)	Acetylene (C ₂ H ₂)	Ethylene (C ₂ H ₄)	Ethane (C2H6)	Carbon monoxide (CO)	Carbon dioxide (CO2)	TDCG ^b
Abnormal	Condition 1	100	120	1	50	65	350	2 500	720
	Condition 2	101-700	121-400	2–9	51-100	66-100	351-570	2 500-4 000	721-1920
High 🛹	Condition 3	701-1800	401-1000	10-35	101-200	101-150	571-1400	4 001-10 000	1921-4630
High	Condition 4	>1800	>1000	>35	>200	>150	>1400	>10 000	>4630
Excessive									

Table 1—Dissolved gas concentrations


IEEE Std C57.104-2008

Low Cost Chemical Sensing Devices Could Allow for Condition Monitoring and Substitution for Costly, Time-Consuming DGA.

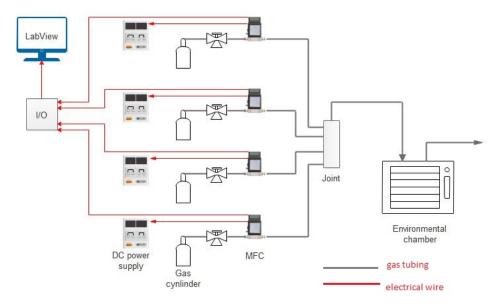
DOE GMLC OE / BTO

Functionalized Optical Fiber Sensors

Initial Work Leveraging Prior Results Demonstrates a Selective Response to H₂ to Be Further Optimized for Low Level Detection.

NATIONAL ENERGY TECHNOLOGY LABORATORY

DOE GMLC OE / BTO


Proposed Targets and Early Efforts

Early Proposed Sensor Development Targets

Target: gases extracted from the oil or in gas space (H₂, CH₄, CO)

- Detection limit: 1–100 ppm
- Dynamic range: > 1000 ppm
- Temperature: ambient to 110 °C
- Detection method: optical sensor
- Requirements: selectivity, stability

Laboratory Facilities Have Been Established for Sensor Testing

The Project is Nearing the 3rd Quarter and Increased Emphasis is Being Placed on Investigating and Optimizing a Range of Sensor Materials.

NATIONAL ENERGY TECHNOLOGY LABORATORY DOE GMLC OE / BTO

Summary and Conclusions

- Emerging Trends Have Highlighted the Importance of Grid Modernization and DOE Has Placed the Area as a Significant Priority
- NETL Has a Strong Focus Area in Functional Materials Integrated with Devices
- Key Current Focus Areas for Materials / Device Research
 - Electrochemical Materials (Solid Oxide Fuel Cells)
 - Optical Materials (Sensor Devices)
 - Magnetic Materials (Inductive Devices)

- Significant Needs Exist for Materials to Enable Grid Components
 - Materials for Power Electronics, Transformers, and Energy Storage Components
 - Sensor Devices for Power Flow and Asset Monitoring
- NETL Has On-going Project Work Supported Through the Grid Modernization Initiative
 - (EERE Funded) Magnetic Materials and Components for Transformers
 - (OE / BTO Funded) Sensors for Asset Monitoring