

Modeling and Characterization of GaN Devices for Next Generation Power Electronics

Raghav Khanna, PhD Assistant Professor, ECCS Department University of Toledo

University of Pittsburgh Electric Power Industry Conference November 15th, 2015

Outline

- A 300 V GaN Based Boost Converter
- Voltage Overshoot on Normally Off GaN Devices
- Future Directions

300 V GaN Based Boost Converter

Model Development

IN SIMULATION

Boost Converter Simulation

Model validation and Future work. What does the model project in higher power circuits?

Device Characterization

IN EXPERIMENTATION

Boost Converter Implementation

Switching and Efficiency Characterization

 600 V GaN FETs used to boost 150 V to 300 V @ 1MHz in synchronous configuration. 6 transistors used = 240 mm of gate width.

• GaN MCM for low stray inductance. Designed to mitigate overshoot and "Miller Turn-On."

Turn-on

Turn-off

• Efficiency vs switching current

GaN Device Model Development in SaberRD

GaN Model Development

• SaberRD used to model 5 essential DC characteristics.

GaN Model Development

• SaberRD used to model 5 essential DC characteristics.

GaN Model Development

• SaberRD used to model 5 essential DC characteristics.

Extracted Parameters

GaN Model Simulation Results in Boost Converter

• Simulated GaN based synchronous boost converter. One 40mm transistor used for each device.

• Select a point to demonstrate validity of the model. Once the model is deemed valid, higher voltage converters will be used.

Chosen point for demonstration: 96% @ 9.4 A

• Switching waveforms at 9.4/6 A. Rise and fall times consistent with experiment.

• Simulated boost converter voltage and current at 9.4/6 A.

• Boost converter input/output power and efficiency.

Simulation vs Experiment

• Efficiency vs switching current in mA/mm

Concluding Remarks

- GaN technology is well suited to revolutionize next generation power electronics, enabling converter efficiencies of 96% at 1 MHz
- Considerable technology readiness factors at both device circuits and device physics levels have hindered their widespread adoption

electrical & computer

engineering

Acknowledgements

- Dr. William Stanchina, Pitt
- Dr. Zhi-Hong Mao, Pitt
- Dr. Gregory Reed, Pitt
- Mr. Ansel Barchowksy, Pitt
- Mr. Joseph Kozak, Pitt
- Dr. Brandon Grainger, Pitt
- Dr. Emmanuel Taylor, Pitt
- Dr. Brian Hughes, HRL Laboratories
- Dr. Karim Boutros, HRL Laboratories
- Dr. Rongming Chu, HRL Laboratories
- Mr. Michael Hontz, University of Toledo
- Mr. Roshan Kini, University of Toledo

Thank you, questions?

Raghav Khanna raghav.khanna@utoledo.edu