

Solar PV Integration

Francisco Velez, PhD Electric Transmission Planning

© 2003 Dominion

Dominion Profile

Primary Operating Segments Overview

Dominion Virginia Power

- Electric Transmission

- 6,455 miles of transmission lines
- Favorable regulatory environment

Electric Distribution

- 57,100 miles of distribution lines
- 2.5 million franchise retail customer accounts in VA and NC

Dominion Energy

Gas Transmission

- Together with Gas Distribution, operates one of the largest natural gas storage system in the U.S.
- 12,200 miles of pipeline in eight states
- Well positioned in Marcellus and Utica Shale regions

Gas Distribution

 21,900 miles of distribution pipeline and 1.3 million franchise retail natural gas customer accounts in OH & WV

Dominion Generation

Utility Generation

- 20,400 MW of capacity
- Balanced, diverse fuel mix
- Favorable regulatory environment

Merchant Generation

- 4,200 MW of capacity, including nuclear, gas and renewable power
- Active hedging program for energy revenue/margins

Dominion Retail

- Retail Gas & Products/Services
- 1.2 million non-regulated customer accounts in 13 states

Dominion Profile Power and Natural Gas Infrastructure

- 24,600 MW of electric generation
- 6,455 miles of electric transmission
- 12,200 miles of natural gas transmission, gathering and storage pipeline
- 928 billion cubic feet of natural gas storage operated
- Cove Point LNG Facility
- 2.5 million electric customers in VA and NC
- 1.3 million natural gas customers in OH & WV
- 1.2 million non-regulated retail customers in 13 states (not shown)
- 252 MW of contracted solar generation in 6 states (not shown)

Research at Dominion

- System Studies for Dominion
 - Group members with PhD and Master Degrees
 - Software and hardware available for research activities

Renewable Portfolio

Wind Generation

- Ned Power in West Virginia
 - 50% Owner
 - 264 MW
- Indiana Wind Power Project
 - 50% Owner
 - 301 MW
 - Commercial Operation began in 2009
- Offshore wind in Virginia
 - Research Continues
 - Up to 2,000 MW
 - Economics is still a challenge in US

Solar Projects

- Utility Scale Facilities in:
 - Virginia
 - Connecticut
 - Georgia
 - Utah
 - Indiana
 - California
 - Tennessee

Fuel Cell Technology

- Bridgeport CT (Clean non-renewable)
 - 14.9 MW
 - Commercial operation started on December 2013
 - 15 year contract with local utility

Solar PV Generation in Dominion Service Territory

Utility Scale Cost

DOE Sunshot

Federal and State Incentives

- North Carolina Tax Credit (2009)
 - 35% Tax Credit for renewable installations
 - Up to \$2,500,000 for non-residential applications
 - Up to \$10,500 for residential applications
 - Must be installed before January 1, 2016

Utility Scale Solar in US

Energy.gov

Source: Preliminary data from the 2013 EIA-860 report

Dominion North Carolina Solar (5/15)

~1,000 MW Peak Load

Generation Interconnection Process

PJM process

- Feasibility Study
 - High level system impact study
- System Impact Study
 - Detailed system impact study
- Facility Study
 - Detailed engineering estimates and timelines to construct
- ISA/ICSA Finalized
 - Primarily a FERC Document

PV Impact on GI Process

Non Traditional Scenario

- Greenfield Projects in Queue
 - Traditional Projects 80% dropout rate (includes wind)
 - PV Projects 80-90% success rate
- Construction timelines
 - Traditional Projects 3-5 years
 - PV 1-2 years

Solar Integration Expereice

- Additional Resources to manage
 - Short installation deadlines
- Anti-Islanding Vs Ride Through Capabilities
- Transfer Trip
 - Expansion of Fiber Network
- Harmonic Distortion
 - THD
 - TDD
- Effective Grounding
 - Overvoltages
- Open Phase
 - Personnel Safety

Open Phase Test

• Protection failed to identify open phase

Facility was not allowed to start operations

Change in Inverter Philosophy

- Previous Idea
 - Disconnect during abnormal conditions
 - Low/High Voltage
 - Low/High Frequency
 - Unity Power Factor

• New Grid Support Functions – Smart Inverters

- Low/High Voltage Ride Through
- Low/High Frequency Ride Through
- Real/Reactive power control
- Ramp Rate Control
- PJM
 - Enforce grid support capabilities after 05/2015

5 MW Solar Site in North Carolina

- Plant went online end of November 2014
- Inverters were adjusted to have fixed Q of 0.95
 Absorbing beginning of March 2015

- Utilize Volt/Var control in the future

Steps Taken to Improve Process

- Develop solar interconnection standard for transmission level projects
- Advance monitoring at POI
 - PMU
 - Power Quality Meter
- Request for inverter models
 - EMTP
 - Load Flow
- Developing standards for Dominion own
 inverters
- Third party certification for testing and commissioning

Transmission Planning

- Identify possible infrastructure requirements to accommodate solar generation
- Diverse number of contingency and operation scenarios that need to be evaluated
 - N-1
 - N-1-1
 - N-1-1 security constrained
 - Bus outage
 - Tower Outage
 - Intermittency

Load Modeling and Behind the Meter PV

- Large Scale System Analysis
 - Traditionally loads have been modeled as constant power, constant current and constant impedance.
 - New NERC standards require composite load models that represent the dynamic behavior of load

Questions?

© 2003 Dominion