

Socially Responsible Microgrid

Electric Power Industry Conference / University of Pittsburgh Drew Chidester – UPMC John Vernacchia – Eaton November 16, 2015

The microgrid concept

A group of generating assets and defined loads that can operate within the utility grid or islanded from the grid, as a self-sufficient stand alone application

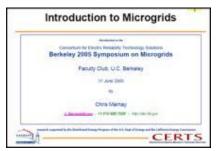
Local "Grid Within a Grid"

 Delivers Power Resilience, Reliability and Uptime

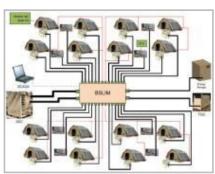
Distributed Energy Sources

- Backup Generation
- In-House Co-Gen
- CHP (Combined Heat and Power)
- On-Site Renewables and Fuel Cells
- Energy Storage (Batteries)

Microgrid Applications


- Islanding & Synchronization
- Black Start
- Generation/Load Balance Control
- Battery Energy Storage & Frequency Regulation
- Load Control / Demand Response

Business cases can be challenging


May not address social needs

Microgrid US DOD and DOE projects

H. R. 3326

Oregon Utility Partner is 178M NW Smart Grid

US DOD military base example

Natural Gas Generators

Project Focus: Energy Surety / Resiliency for a military campus

Solution developments:

- Manage multiple generation sources natural gas generators, solar pv, wind, battery storage
- Optimized capital and operating costs via microgrid system design
- Seamless islanding and reconnection to the grid

Military campus experience transferable to hospital / university campus microgrids

US DOE utility feeder example

5MW Inverter System

5MW Li-ion Batteries

Project Focus: Utility feeder reliability for commercial and residential customers

Solution developments:

- Control 20 inverters and batteries to provide 5 MW of energy storage in both grid-connected and islanded modes
- Design of electric power distribution and controls to connect energy storage system to utility grid
- Islanding without loss of power and reconnection to the grid
- Interface to diesel generators, solar pv and wind on the same electrical grid

Utility feeder microgrid provides uninterrupted power to commercial and residential

Benefits

- Economic
 - Direct
 - Indirect
- Reliability & Power Quality
- Environmental
- Security & Safety

Traditional barriers

- Financial "ROI"
- Asset limitations
- Regulatory
 - Environmental
 - Zoning Restrictions
 - Existing Codes and Recommended standards and or Practices

Flawed decision making process

- Emphasis on Finance
- Structured on 20th century needs
 - Electrical distribution systems
 - Building design
 - Emergency response
- 21st century needs
 - Electricity is considered as an essential need
 - A Social Responsibility

Socially responsible microgrid

- Unifies public needs and brings together key partners
 - Non Profits / Institutions
 - Government
 - Private Sector
- Provides essential electricity during long-term outages resulting from a natural disaster or other emergency event
- Mandates the development of revised designed codes to support the greater public need during emergency response
- Requires a new funding process to meet public needs

Socially responsible Oakland microgrid concept

Healthcare

Montefiore

Magee

Presbyterian

Emergency Services

Station 14

Critical Infrastructure

Herron Hill

Emergency Shelter

Soldiers and Sailors

Socially responsible Oakland microgrid - Challenges / barriers

- Apply emerging microgrid technology into a dense urban grid setting to meet critical social needs
- Grid to Microgrid Tie existing and new generation assets to the current utility grid infrastructure
- Develop new utility and government agency regulations
 - Public Utility Commission
- Public safety coordination with emergency response
- **Emergency** versus **normal** operating conditions / scenarios
- Alignment with community environmental / sustainability goals
- Ownership of the microgrid assets, how they might be funded and "monetized"

Bring together Pittsburgh's unique resources from academia, the private sector and the public sector to meet the challenge!

- Develop new design guidelines for critical infrastructure to meet community needs
- Develop initial roadmap for overall "Grid to MicroGrid" design across the City, in coordination with the overall District Energy Initiative
- Utilize Pittsburgh's Energy Innovation Center
- Engage key community stakeholders
 - The City of Pittsburgh
 - Allegheny County
 - US Department of Energy
 - Duquesne Light
 - Eaton
 - University of Pittsburgh
 - UPMC

Create an urban energy model to meet 21st Century social responsibilities

