PAVEMENT AND BRIDGE REHABILITATION USING MATERIAL COMPATIBLE REPAIRS

Max Stephens, Ph.D.

Julie Vandenbossche, Ph.D.

Naser P. Sharifi, Ph.D.

CURRENT METHODS OF REPAIR

Concrete Pavements

Partial Depth Repair

Dowel Retrofit

Full Depth Repair

Concrete Bridges

Type 1

Type 2

Type 3

CURRENT PRACTICES

Typical repair materials (Cementitious Materials)

Product	Material	Working	Installation	Time-to-	Moisture (Material	
	Category	Time, min	Temp., °F	Traffic,	Repair	Aggregate	Cost
				hr.	Surface		Factor
Type III PCC	PCC	20	32 to 109	4 to 6	SSD to dry	1-3% to dry	1
Duracal	gypsum-based	20	32 to 109	1.5	SSD to dry	1-3% to dry	0.7
Set-45	magnesium phosphate	10	32 to 90	1.5	dry	1-3% to dry	3.5
Five Star HP	high alumina	20	32 to 90	1.5	SSD to dry	1-3% to dry	3
Pyrament 505	Hydraulic cement	30	32 to 109	2 to 3	SSD to dry	1-3% to dry	2

THE PROBLEM

Deficiencies in Repair Materials [3]:

- Compressive failure of repair material
- Incompatible stiffness
- Incompatible thermal expansion
- Excessive autogenous shrinkage
- Variability in repair material
- Insufficient consolidation
- Delayed curing

RESEARCH OBJECTIVES

- 1. Identify critical parameters for compatible repair mixture
- 2. Develop repair material selection framework
- 3. Propose new mix designs
- 4. Experimental evaluation of repair materials (developed and commercially available)

Material Selection Framework


RESEARCH OBJECTIVES

Improved Performance

- 1. Improved strength & reduced ϵ_{repair} » Internal curing
- 2. Extended durability
- 3. Structure and Repair deform at the same rate:
 - a.) Applied load
 - b.) Change in temperature
 - c.) Drying shrinkage

- " Elastic modulus, $E_{repair} = E_{existing}$
-)) Thermal coefficient, $\alpha_{\rm repair} = \alpha_{\rm existing}$
-)) $\varepsilon_{\text{repair}}$ reduced

Material Compatible Repair

PROGRESS TO DATE

- 1. Performed literature review
- 2. Defined performance criteria
- 3. Identifying key parameters in material selection framework
- 4. Identifying materials for use in repair mixes

* Current step

Performance Criteria						
Constructability	Easy to perform, Versatile, etc.					
Fresh	Setting Time					
Concrete	Workability (Slump)					
	Flexural and Compressive Strength					
	Fatigue Performance					
Hardened	Stiffness Compatibility					
Concrete	Thermal Compatibility					
	Bonding					
	Shrinkages (Autogenous and Total)					
Concrete	Freeze/Thaw Deterioration					
Durability	Chloride Permeability (Resistivity)					

		Concrete Pavement			
Performance Criteria			Dowel Retrofit	Full Depth	
Constructability	Easy to perform, Versatile, etc.	✓	✓	✓	
Fresh	Setting Time	✓	✓	✓	
Concrete	Workability (Slump)	✓	\checkmark	\checkmark	
	Flexural and Compressive Strength	✓	✓	✓	
	Fatigue Performance	✓	✓	\checkmark	
Hardened	Stiffness Compatibility	✓	\checkmark	×	
Concrete	Thermal Compatibility	✓	\checkmark	×	
	Bonding	✓	\checkmark	×	
	Shrinkages (Autogenous and Total)	✓	\checkmark	×	
Concrete	Freeze/Thaw Deterioration	✓	✓	✓	
Durability	Chloride Permeability (Resistivity)	✓	\checkmark	\checkmark	

		Concrete Pavement			Concrete Bridges		
Performance Criteria		Partial Depth	Dowel Retrofit	Full Depth	Type 1	Туре 2	Туре 3
Constructability	Easy to perform, Versatile, etc.	✓	✓	✓	✓	✓	✓
Fresh	Setting Time	✓	✓	✓	✓	✓	✓
Concrete	Workability (Slump)	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark
	Flexural and Compressive Strength	√	✓	✓	✓	✓	√
	Fatigue Performance	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark
Hardened	Stiffness Compatibility	✓	\checkmark	×	✓	\checkmark	×
Concrete	Thermal Compatibility	✓	\checkmark	×	✓	\checkmark	×
	Bonding	✓	\checkmark	×	✓	\checkmark	×
	Shrinkages (Autogenous and Total)	✓	\checkmark	×	✓	\checkmark	×
Concrete	Freeze/Thaw Deterioration	✓	✓	✓	✓	✓	✓
Durability	Chloride Permeability (Resistivity)	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark

1. Fresh Concrete

- Workability
- Set time/high early strength

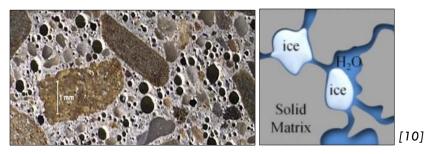
2. Hardened Concrete

- Flexural and compressive strength compatibility
- Stiffness compatibility
- Thermal compatibility
- Shrinkage (autogenous and total)
- Bond
- Fatigue

Workability Tests

Strength Tests

Shrinkage Tests



3. Durability

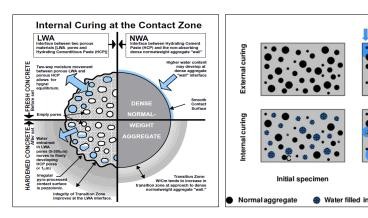
- Freeze/thaw deterioration
- Chloride permeability

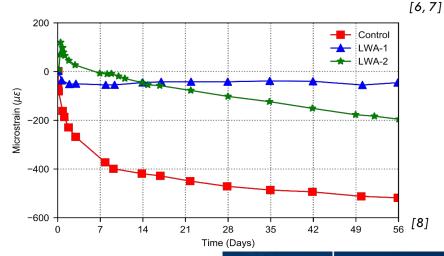
4. Constructability

- Simple to implement
- Versatile

Air Voids

Permeability Test





INTERNAL CURING


- Saturated porous materials release water as needed to promote longer curing times in surrounding cement paste.
- Shrinkage can be significantly reduced.
- Improves bond between repair material and existing concrete.

SCHEDULE

NEXT STEPS

1. Development of materials selection framework

Characterize in-situ PCC properties

2. Development of material design procedure

Use in-situ properties with previously identified performance objectives

3. Experimental evaluation of repair materials

- Proprietary repair mixes
- New repair mixes

4. Extensive numerical study

 Characterize performance threshold resulting from differences in insitu properties and repair properties

REFERENCES

- [1] PennDOT, Publication 408: Specifications. Harrisburgh, PA: Pennsylvania Department of Transportation, 2018.
- [2] PennDOT, Publication 242: Pavement Policy Manual. Harrisburgh, PA: Pennsylvania Department of Transportation, 2018.
- [3] T. P. Wilson, K. L. Smith, and A. R. Romine, "Materials and Procedures for Rapid Repair of Partial-Depth Spalls in Concrete Pavements: Manual of Practice," Federal Highway Administration, Washington, D.C., FHWA-RD-99-152, 1999.
- [4] ACPA, Mid-Atlantic Chapter, Pavement Rehabilitation with Un-bonded Concrete Overlays.
- [5] Sharifi, Naser P., and Kamyar C. Mahboub. "Application of a PCM-rich concrete overlay to control thermal induced curling stresses in concrete pavements." Construction and Building Materials 183 (2018): 502-512.
- [5-1] L. Titus-Glover et al., Enhanced portland cement concrete fatique model for street pave, Transp. Res. Rec.: J. Transp. Res. Board 1919 (2005) 29—37.
- [5-2] R.G. Packard, S.D. Tayabji, New PCA thickness design procedure for concrete highway and street pavements, in: Third International Conference on Concrete Pavement Design and Rehabilitation Purdue University; Federal Aviation Administration; and Indiana Department of Highways, 1985.
- [5-3] B.H. Oh, Fatigue analysis of plain concrete in flexure, J. Struct. Eng. 112 (2) (1986) 273—288.
- [6] https://arcosalightweight.com/index.php/applications/internal-curing
- [7] Bentz, Dale P., and W. Jason Weiss. Internal curing: a 2010 state-of-the-art review. Gaithersburg, Maryland: US Department of Commerce, National Institute of Standards and Technology, 2011.
- [8] H. Kim and D. Bentz, "Internal Curing with Crushed Returned Concrete Aggregates for High Performance Concrete," presented at the NRMCA Concrete Technology Forum: Focus on Sustainable Development, Denver, CO, 2008.
- [9] Chen, Siyu, et al. "Material selections in asphalt pavement for wet-freeze climate zones: A review." Construction and Building Materials 201 (2019): 510-525.
- [10] Mayercsik, Nathan P., Matthieu Vandamme, and Kimberly E. Kurtis. "Assessing the efficiency of entrained air voids for freeze-thaw durability through modeling." Cement and Concrete Research 88 (2016): 43-59.
- [11] Rupnow, Tyson D., and Patrick Icenogle. Evaluation of surface resistivity measurements as an alternative to the rapid chloride permeability test for quality assurance and acceptance. No. FHWA/LA. 11/479. Louisiana Transportation Research Center, 2011.

THANK YOU

max.stephens@pitt.edu jmv7@pitt.edu npsharifi@pitt.edu

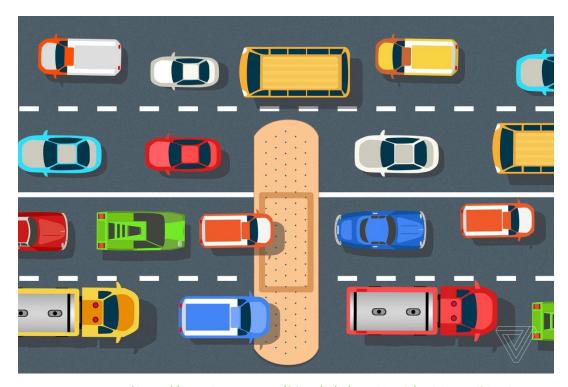


Image courtesy of https://www.theverge.com/2017/5/4/15544156/potholes-self-healing-materials-infrastructure-transportation

