Municipal Resiliency Practicalities

From analysis to case studies

Aaron F. Snyder, Ph.D. EnerNex LLC

► A Microgrid

An East Coast Project

A Framework

What is a Microgrid?

"A microgrid is a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode" Microgrid Exchange Group Definition

En er N e🗙

\x45\x6e\x65\x72\x4e\ x65\x78\x20\x53\x65\ x63\x75\x72\x69\x74\x7

► A Microgrid

An East Coast Project

A Framework

Project Motivation

- Three major extended outage events in 2011-2102 impacting United Illuminating service territory
 - Hurricane Irene
 - October 2011 Snowstorm
 - SuperStorm Sandy
- Options to increase resiliency for critical facilities
 - Reviewed territory for potential microgrid locations
 - Selected two communities for pilot proposals
- Critical facilities defined
 - Police and fire stations
 - City hall
 - Emergency shelters/schools
 - Public works facilities

EnerNe🗙

\x45\x6e\x65\x72\x4e\ x65\x78\x20\x53\x65\ x63\x75\x72\x69\x74\x

Critical Facilities Hardening Studies

- Consider Two Primary Options
 - Individual natural gas generators for all critical facilities
 - "Hardened" microgrid for centrally-located facilities; natural gas generators for facilities off microgrid circuit
- Microgrid option
 - Defined high level microgrid design/conceptual architecture
 - Defined overall requirements for the system Generators, Control systems, Communications systems
 - Designed underground electrical infrastructure needed for community microgrid
 - Evaluated economics of three natural gas-fueled microgrid powering options

Unique Aspects of UI Microgrids

- "Hardened" microgrid
 - Underground electrical infrastructure
 - Underground communications
 - Redundant microgrid controls
- Natural gas-fueled generation, only (no diesel, solar, storage), sized to meet peak demand requirements of all loads on circuit -- with option for fully redundant generator
- Limited demand response requirement
- UI would own the distribution and interconnection infrastructure, microgrid controls and communications -- but generators to be owned by others
- UI would have rights to operate microgrid generators in an emergency condition
- Regulatory approval/cost recovery necessary to implement

Critical Load Circuit – Conceptual Design

x65\x78\x20\x53\x65\

High Level Microgrid Use Cases

\x45\x6e\x65\x72\x4e\ x65\x78\x20\x53\x65\

Operate Microgrid / Bill Microgrid / Test Microgrid

Economics

Even without considering the more intangible socio-economic, public health and safety benefits, CHP-based microgrid produced slightly positive NPV for one community; slightly negative NPV for the other

\x45\x6e\x65\x72\x4e x65\x78\x20\x53\x65\

EnerNex

10

A Microgrid

An East Coast Project

A Framework

x65\x78\x20\x53\x65\ x63\x75\x72\x69\x74\x75

Triggering Events

Sept. 8, 2012 San Diego Outage

- Power out to 7 million people in southern California, Baja and Arizona
- Gridlock ensued minutes after the outage
- 70 elevator rescues, many people trapped for 3+ hours
- Emergency communications overwhelmed in first 30-60 minutes
- Scripps Mercy hospital without power for 90 minutes due to generator failure
- Gas pumps inoperable without electricity

Impact Summary

- \$100M in economic losses
- 3.5 million gallon sewage spills

x45\x6e\x65\x72\x4e

EnerNex 12

 Schools and Universities closed the following day

Key Lesson Learned

Critical facilities and infrastructure should be identified, prioritized, and protected for resiliency

Prioritization

Tier 1: Emergency responders and medical facilities

- Use UPS to protect critical systems e.g. 911 call system
- Redundant power supply in addition to grid supplied power

Microgrid for co-located critical facilities

- Or multiple generators (backup or distributed generation)
- Bulk energy storage
- Consider resiliency and economic benefits of on-site base load generator
- Test on-site generation monthly
- Test microgrid under simulated grid outage scenario at least annually (perhaps during an overall emergency preparedness exercise) and under varied scenarios

x45\x6e\x65\x72\x4e

Prioritization

- Tier 2: Continuity of operations & communications
 - Use UPS's to protect communications systems
 Emergency radio, reverse 911 call system, web, email, text messages
 - If co-located near Tier 1 facilities consider microgrid
- Tier 3: Social-economic continuity: Shelters, grocery stores, fuel stations, water supply, sewage, & business case inclusion
 - Encourage grocery stores and fuel stations to install on-site rotating generation, fuel cells or other distributed generation
 - Cite economic advantages e.g. revenue generated during outages, food storage advantages, and customer service
 - Ensure all pumping stations have backup power generators, even those with 2 grid connections to protect against area-wide power outages
 - If co-located near Tier 1 facilities consider microgrid

\x45\x6e\x65\x72\x4e x65\x78\x20\x53\x65\

Ten Resilient Energy System Characteristics

Supports life safety, restoration effectiveness, and socio-economic continuity during a major event

Aware

\x45\x6e\x65\x72\x4e\ x65\x78\x20\x53\x65\ x63\x75\x72\x69\x74\x

FnerNex 15

Survivable

Responsive and adaptive

Modular or loosely-coupled architecture

Planned, modeled, and prepared; ready for immediate and reliable deployment

Incorporates redundancy or spare capacity

Actively monitored and maintained

Supports a diversity of energy sources

Leverages multiple value streams

A Microgrid

An East Coast Project

A Framework

A West Coast Project

\x45\x6e\x65\x72\x4e\ x65\x78\x20\x53\x65\ x63\x75\x72\x69\x74\x75

Local Energy Action Plan (LEAP)

- Inaction can be more expensive than action on energy assurance
- ► LEAPs
 - Are complementary to your energy efficiency efforts
 - Go hand-in-hand with your sustainability efforts
- Emergency management personnel are key players in the energy assurance area, offering a wealth of experience and wisdom
- Active utility involvement is crucial to virtually all energy assurance efforts
- California specific resources available at CaLEAP website

http://www.caleap.org/

FnerNex 17

What is Energy Assurance?

- Identifying and prioritizing your critical facilities and energy infrastructure
- Risk Management and Distributed Strategies (e.g. mix of fuels for transportation options, etc.)
- Establishing new communications networks with the private sector and state and federal government officials.
- Building redundancy and resiliency into your government systems and processes
- Includes both Recovery & Restoration
- Ensuring commerce and minimizing economic disruptions
- Ensuring citizen well being via access to energy during event recovery

x45\x6e\x65\x72\x4e

CHB: Project Parameters

- Identify specific "best bang for the buck" projects to enhance energy assurance:
- A Civic Center microgrid, to include reconfiguration of existing emergency circuits, replacement of existing backup generation, and eventually addition of energy storage
- Providing backup generation for the sewage lift stations, in some cases with permanent generation, in others a recommended standard, portable, non-diesel solution where possible
- A solution for backup generation for the tertiary EOC located at the Central Library

 'As-is' assessment of City's critical facilities, documentation, and related infrastructure

\x45\x6e\x65\x72\x4e\ x65\x78\x20\x53\x65\

- Prioritization according to CaLEAP's three-tier priority strategy
- Reconfiguration of existing assets where deficiencies are known
- Resiliency/hardening priorities and recommendations
- Proposed additional follow-on conceptual projects the City may consider in its longer term planning strategy
- Recommendations and Next Steps

CHB Notable EAP Projects

- Civic Center
 - Lighting, exit signs, chillers, motors, water pump, air handlers, cooling tower, boiler, lighting

Central Library

- Motors, water pump, air handlers, boiler, lighting
- EMS and updated maintenance for both
- ► Solar feasibility → PPA
- Streetlights: GIS audit, LED retrofit (\$2M/yr., 14k lights)

City of Huntington Beach Energy Action Plan

\x45\x6e\x65\x72\x4e\ x65\x78\x20\x53\x65\ x63\x75\x72\x69\x74\x

CHB 'As-is': City Hall

- 400kW of diesel backup generation (2x200kW)
- 200kWh of UPS backup for the IT systems (roughly two hours' worth)
- EOC (Primary) and emergency circuits tied to the backup UPS and/or generators
- 1.0MW of onsite solar generation, not currently capable of being used in a power outage (2.3MW PPA total citywide)
- On-site gasoline (24,000 gal.) and diesel fuel storage (5,000 gal.)
- Natural gas pipeline connection

Backup Generators

\x45\x6e\x65\x72\x4e\ x65\x78\x20\x53\x65\ x63\x75\x72\x69\x74\x7

"Automatic" Control System

Manual Start Process

30-minute UPS in parallel

EnerNe× 23

Example Recommendations

Example Recommendation:

- Proper configuration of emergency circuits for entire site
- Replacement of existing diesel backup with bi-fuel (NG/LPG) backup and ATS
- Better management of systems tied to 200kWh UPS
- Consider a civic center site-wide microgrid that incorporates storage and the generators to automatically manage the loads

Example Recommendations

Long-term:

- Operation of 1.0MW array when grid not available
- Full EE/DR/transactive energy controls to maximize solar and microgrid investments
- Engage SCE and High School to get past barriers of incorporating HS into civic center microgrid (as a powered central shelter and distribution point)

x45\x6e\x65\x72\x4e

Delivered Comprehensive Plans

City Hall microgrid

Sewage lift station backup generation

City Yard fuel station backup generation

Street light LED retrofit

Solar expansion at City Water, City Yard, and City Library

Aaron F. Snyder Deputy Director EnerNex LLC <u>aaron@enernex.com</u>

