Solar Energy Keynote Lecture

John A. Swanson
Electric Power Industry Conference
University of Pittsburgh
November 12, 2012

Energy Overview

- The next set of slides is to give an overall introduction to the energy landscape
- It leads down to my focus area, residential PV power

Engineering's Grand Challenges (NAE)

- Make solar energy economical
- Provide energy from fusion
- Develop carbon sequestration methods
- Manage the nitrogen cycle
- Provide access to clean water (Solar RO?)
- Restore and improve urban infrastructure

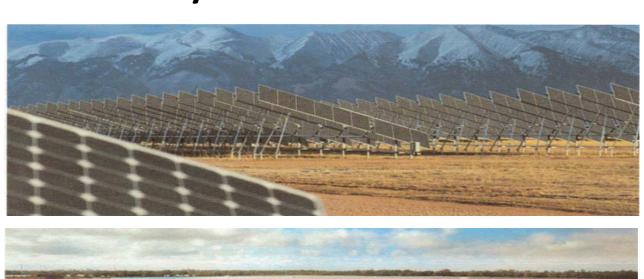
- Advance health Informatics
- Engineer better medicines
- Reverse-engineer the brain
- Prevent nuclear terror
- Secure cyberspace
- Advance personalized learning
- Engineer the tools of scientific discovery

Energy Map

- Energy
 - Mobile
 - Gasoline, CNG, Jet Fuel, Hybrids, Electric Vehicles
 - Sunlight + Carbon Dioxide + Water + algae = ethanol?
 - Stationary
 - Fossil Fuels
 - Coal, Natural Gas, Oil
 - Nuclear
 - Renewable

Renewable Energy

- Hydroelectric
 - Most sites used
 - Available on demand
- Geothermal
 - Power generation
 - Available on demand
 - Residential heating/cooling
 - Energy storage
- Waves
- Wind
- Solar

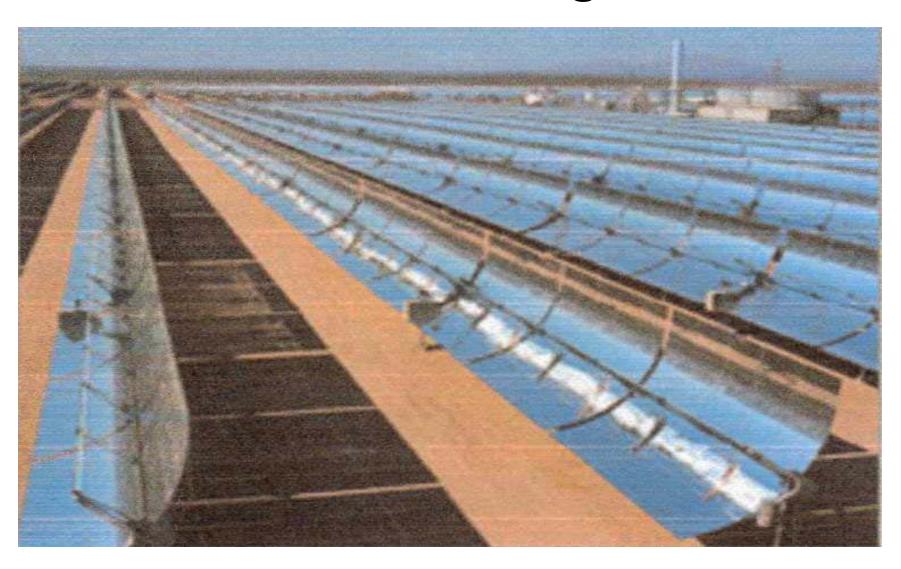

Solar Electric Energy

- Utility Scale
 - 10 Mw to 10 Gw
 - PV
 - CSP
- Commercial
 - 20Kw to 10 Mw
 - Behind the meter
- Residential
 - 2 Kw to 20 kW
 - Behind the meter

Utility Scale Solar Power

- Utility
 - Photovoltaic farms (fields)
 - Concentrated Solar Power (CSP)
 - Direct Sun only (Southwest US)
 - Fresnel
 - Parabolic Troughs
 - Solar Towers (Spain)
 - Solar Chimney (Australia)

Utility Scale PV Fields

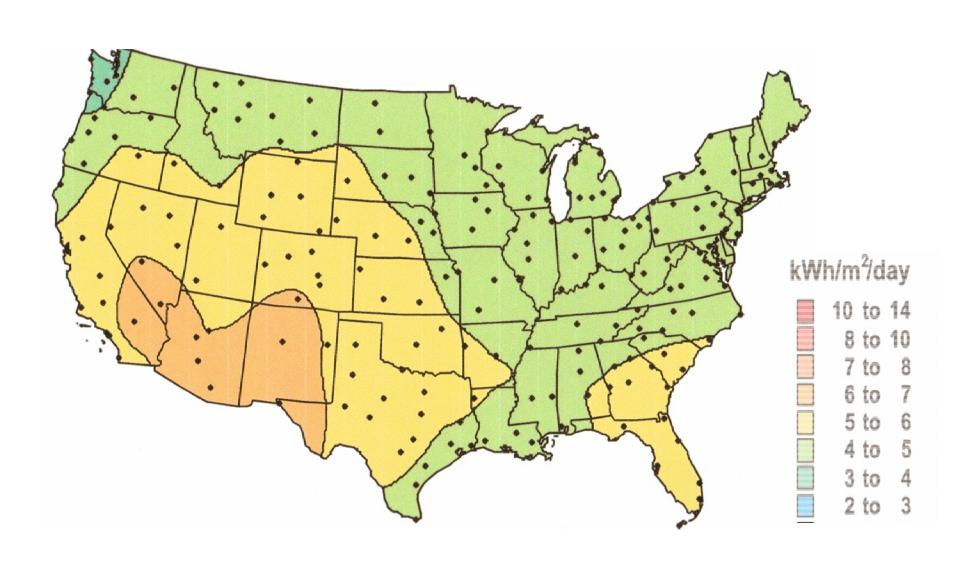


Fresnel Mirrors

Parabolic Troughs

Solar Towers

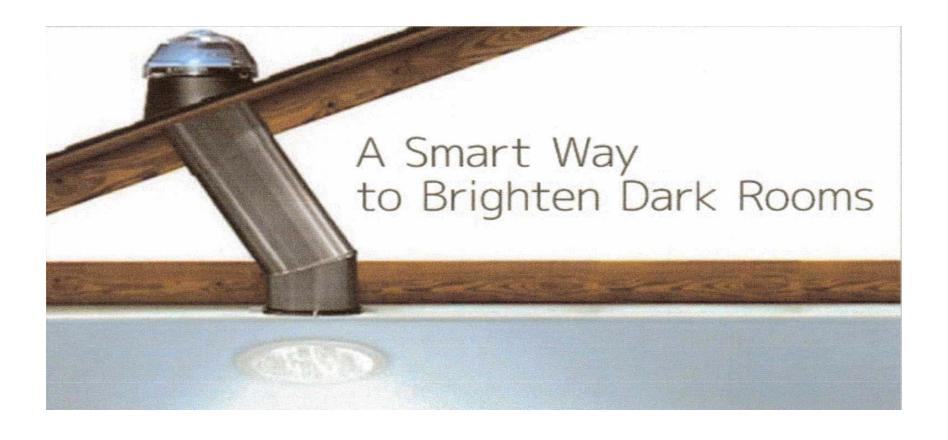
Solar Chimney

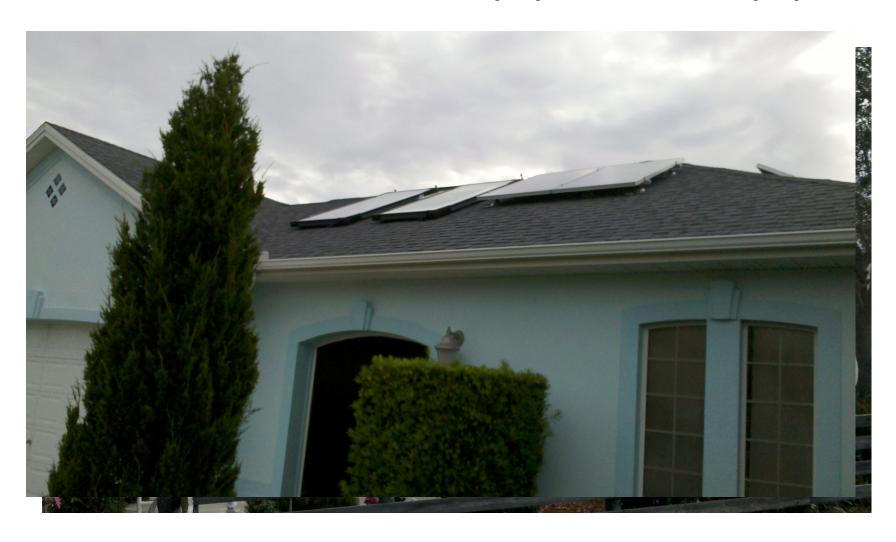

Residential

- Residential
 - Light
 - Solar Tubes
 - Heat
 - Solar Pool Heating
 - Solar Hot Water
 - Electricity
 - Solar Panels

The Sun

- Produces Light, Heat
- Pro:
 - Free
 - Widely available (especially in USA)
- Con:
 - Daytime only
 - Clouds
 - Jet trails


Solar Distribution in the United States


Uses of Sun Power

- Sun Light
 - Clothes drying (not often anymore)
 - Solar Tubes
 - Interior light
 - Closets, Bathrooms, Large Rooms
- Sun Heat
 - Pool Heating
 - Heat stored in pool water
 - Solar Hot Water
 - Heat stored in large water tank

Solar Tube

Solar Hot Water (2) and PV (2)

My Solar Hot Water System

- Open Loop
 - Tank water circulates thru collector panels
 - Collector panels vent if temperature is too high
- Circulation by DC pump
 - Solar powered
 - Circulates when the sun shines

Solar Hot Water Tank (80 gal)

Solar Hot Water Tank (Data Collection)

Solar Hot Water Cost (5/16/2012)

System with one collector \$2,700 (sale)

Second collector 500

New 80 gallon tank 581

Tie to old electric tank (50 ft) 350

30 amp, 240 volt circuit 200

Total \$4,331

After 30% tax credit \$3,032

Pitt Project: Can this be done with solar panels more cheaply?

Solar PV Hot Water Concept

Solar Hot Water Economics

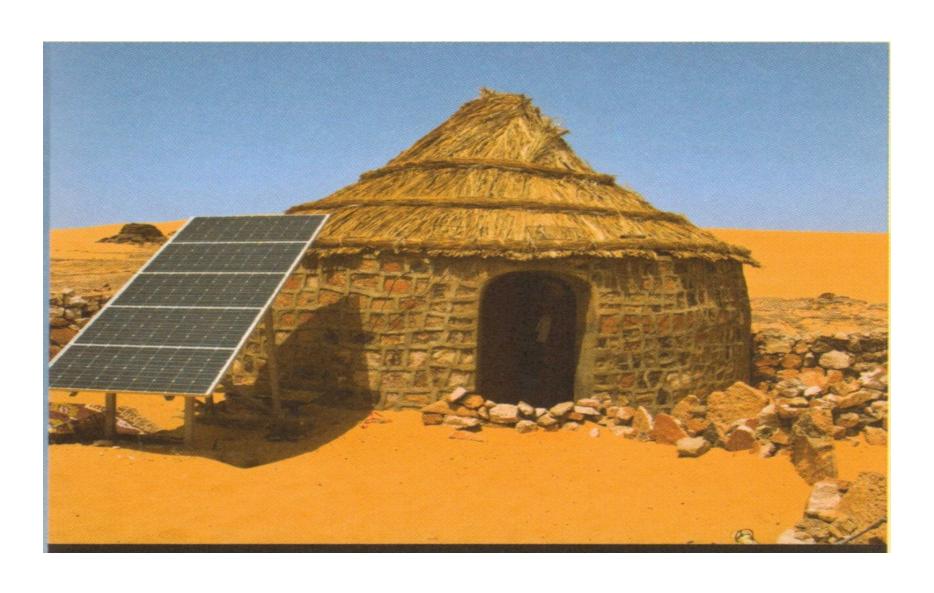
Solar Hot Water Report		
80 Gallon System	Without Rebate	With Utility Rebate
System List Price	\$4,331	\$4,331
Federal Tax Credit (30%)	\$1,299	\$1,299
Utility Company Rebate	\$0	\$1,000
Net Cost	\$3,032	\$2,032
Average Yearly Savings (Est.)	\$300	\$300
SECO Electric Cost (per AC KWH)	0.11	0.11
Equivalent Yearly KWH	2730	2730
Return / Investment	9.90%	14.77%
Tax Bracket	28%	28%
After tax Anuity return	13.74%	20.51%

Solar Electricity

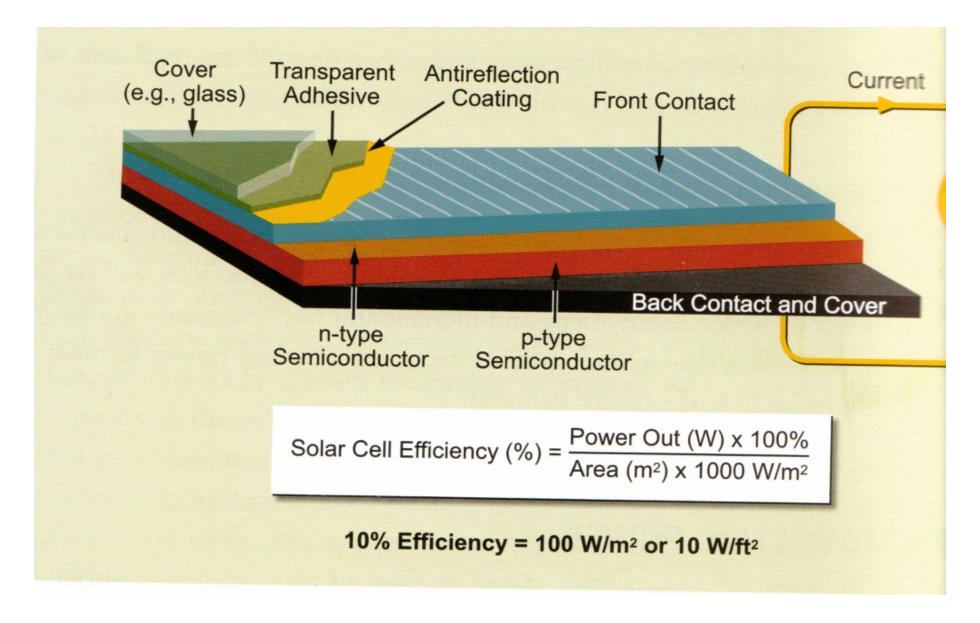
- Wind
 - Produced by temperature differences
 - Not practical for residential areas
 - Tall towers
 - Noise
- Solar Panels (Photovoltaic) (PV)
 - Convert sunlight to electricity
 - Produce direct (steady) current

PV Electric (5KW) and Solar Tubes

Electric Only (5 KW)


Swanson Phase 2 (10 KW)

Temple Shalom (37.6 KW)


A Far Out Application

Solar Power System

- Solar Panels on roof
 - South facing sloped roof is best
 - Tilted panels on flat roof
 - East, West have slightly lower generation (85-90%)
 - North is not recommended
- Inverter
 - Converts DC (Direct Current) from panels to AC (Alternating Current) to match utility power
- External Disconnect
 - To protect utility workers

PV Solar Cell Basics

Size of PV Array

- Each panel is about 3 x 5 feet (1.0x1.6 m)
- Weight is about 42 pounds
 - Similar to 3/4 inch plywood
- Panel ratings from 200 to 275 watts
- 3.0 KW 12 panels (250W) (220 sq ft)
- 5.0 KW 20 panels (250W) (360 sq ft)
- 10.0 KW 40 panels (250W) (720 sq ft)
- No moving parts
- Estimate approximately 2 watts per square foot
 - \$70 saving per month for 5 KW (per SECO)

5 KW Inverter

Microinverters

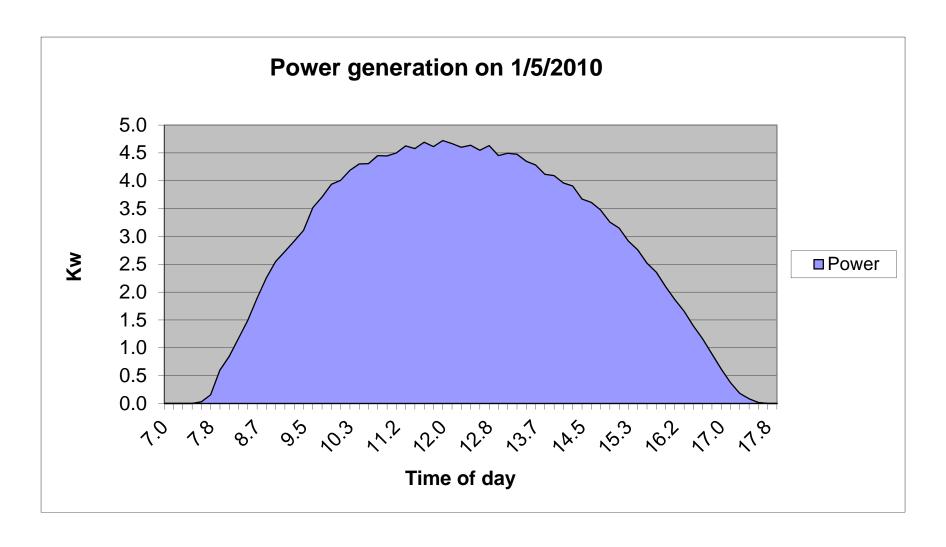
- One inverter per panel
- Direct conversion to AC at point of generation
- Mounts on roof, directly under panel
- AC Cabling to disconnect switch and power panel
- Current price \$140 per panel
- \$2800 for 20 panel system
 - Vs about \$2000 for 5KW inverter
- Gives real time internet monitoring
- Automatic disconnect for power outages
- Good for locations with partial shading

Microinverter

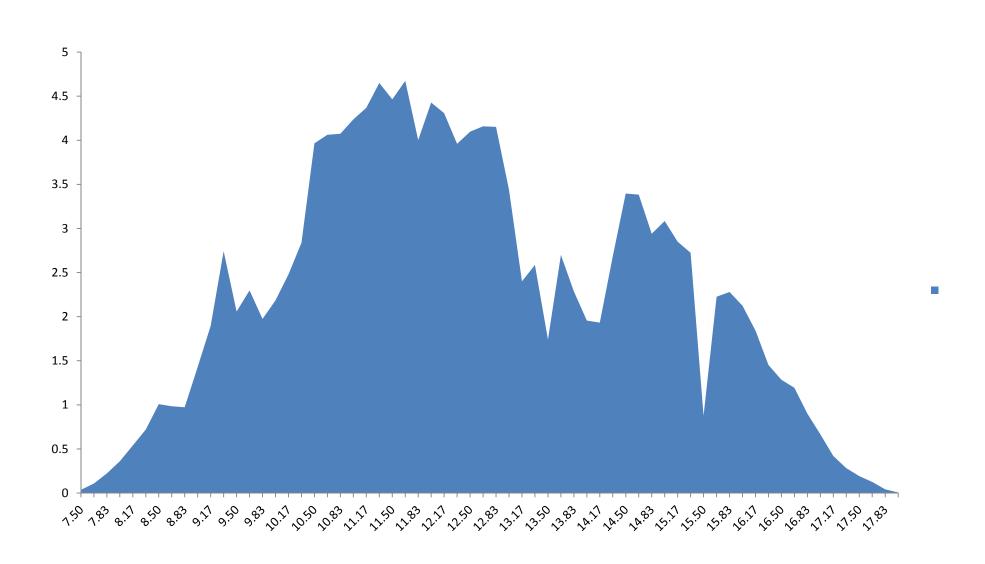
Warranties

- Panels (typical)
 - 10 years at 90% of rating
 - 25 years at 80% of rating
- Inverters
 - 10 years standard, 15 and 20 years optional
- Enphase Microinverters
 - 15 years
 - Now 25 years (M215 model)

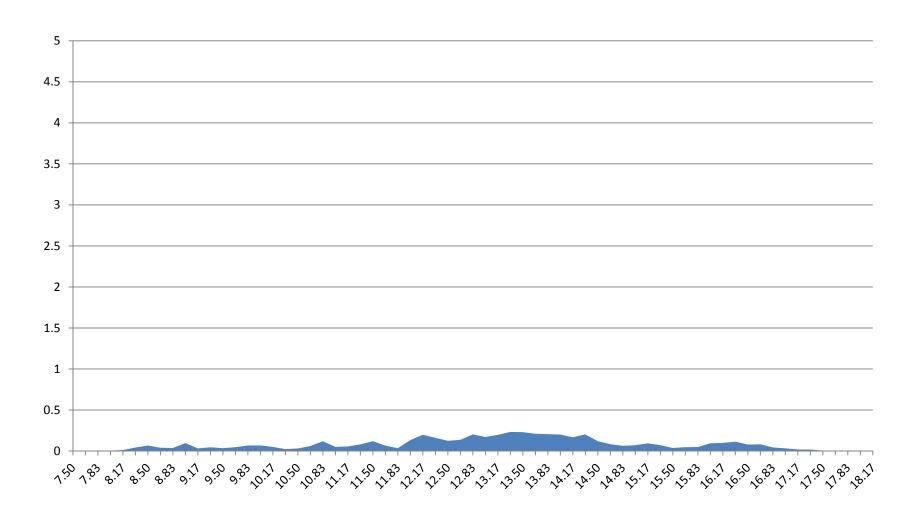
Meter and Disconnect Switch



December Meter Readings


RES NET BILL KWH USED

- 920
- Power bought from the power company
- RES NET BILL KWH GENERATED 357
 - Power sent to the power company
- Notice that this does NOT indicate the amount of power generated or used


A Beautiful Day in The Villages

Not so beautiful day

Really Bad Day

Oct 2009 Economics for 5 Kw System

Swanson House Solar	Power R	eport	
	System		
	1	5 KW	
Installation Date	October	2009	
System List Price			\$41,500
Federal Tax Credit (30%)	\$12,450		
Florida Solar Rebate (Pro			
rata)	\$10,437		
Net Cost			\$18,613
Average Yearly Generation			
(KWH)			8,795
DC-AC Conversion			
Efficiency (est.)			0.90
SECO Electric Charge (per			
KWH)			\$0.11
Average Yearly Savings			\$869
Return / Investment			4.7%
Tax Bracket			35%
After tax Annuity			7.2%

January 2012 Economics for 5KW

	System 1	5KW	System 2	5KW
	October 2009		January 2012	
System List Price		\$41,500		\$15,000
Federal Tax Credit (30%)	\$12,450		\$4,500	
State Solar Rebate	\$10,437		\$0	
Utility Solar Rebate	\$0		\$0	
Net Cost		\$18,613		\$10,500
Average Yearly DC Generation (KWH)		8795		8795
DC-AC Conversion Efficiency (est.)		0.90		0.90
SECO Total Cost (per AC KWH)		0.11		0.11
Average Yearly Savings		\$869		\$869
Return / Investment		4.67%		8.27%
Tax Bracket		28%		28%
After tax Anuity return		6.48%		11.49%

Dec 2012 Quantity Economics for 5KW System

Swanson House Solar Power						
	System 1	5KW	System	1 2 5KW	Quantity	5KW
Installation Date	October 2009		Januar	y 2012	Dec 2012	
System List Price		\$41,500		\$14,500)	\$12,500
Federal Tax Credit (30%)	\$12,450		\$4,3	50	\$3,750	
Florida Solar Rebate	\$10,437			\$0	\$0	
Net Cost		\$18,613		\$10,150)	\$8,750
Average Yearly Generation		8,795		8,79	5	8,795
DC-AC Conversion Efficiency (est.)		0.90		0.90		0.90
SECO Electric Charge (per KWH)		\$0.11		\$0.11		\$0.11
Average Yearly Savings		\$869		\$869	9	\$869
Return / Investment		4.7%		8.6%	ó	9.9%
Tax Bracket		35%		35%	ó	35%
After tax Annuity		7.2%		13.2%	6	15.3%

What Happens with Aggressive Support?

	System 1	5KW	System 2	5KW	Louisiana	5KW	Progress	5KW
	October 20	09	January 20	012	Aug 2012		Oct 2012	
System List Price		\$41,500		\$15,000		\$15,000		\$15,000
Federal Tax Credit (30%)	\$12,450		\$4,500		\$4,500		\$4,500	
State Solar Rebate	\$10,437		\$0		\$7,500		0	
Utility Solar Rebate	\$0		\$0		\$0		\$10,000	
Net Cost		\$18,613		\$10,500		\$3,000		\$500
Average Yearly DC Generation (KWH)		8795		8795		8795		8795
DC-AC Conversion Efficiency (est.)		0.90		0.90		0.90		0.90
SECO Total Cost (per AC KWH)		0.11		0.11		0.11		0.11
Average Yearly Savings		\$869		\$869		\$869		\$869
Return / Investment		4.67%		8.27%		28.96%		173.75%
Tax Bracket		28%		28%		28%		28%
After tax Anuity return		6.48%		11.49%		40.22%		241.32%

In Perspective

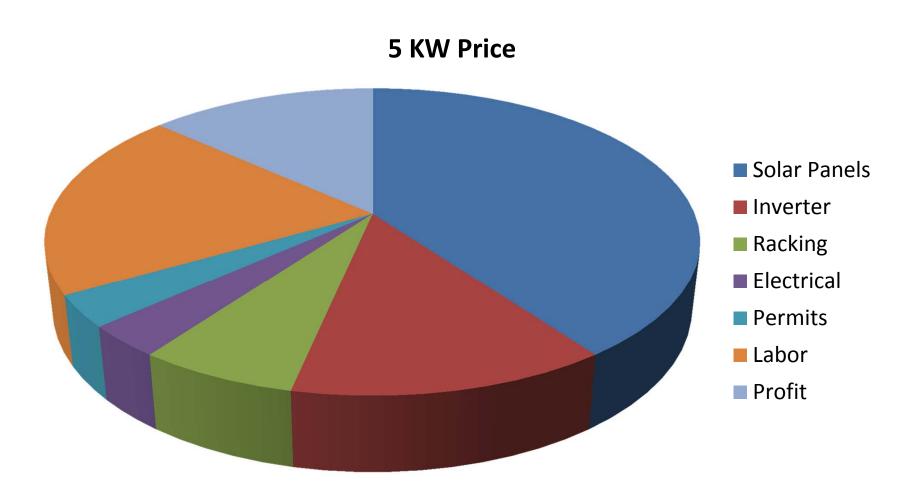
- Current price is about \$3.00 per watt
 - This is a sloped shingled roof installation
 - A flat roof installation can be done for about \$4.00
- Data from SunShot Vision Study (Feb 2012)

Table 1-1. Benchmarked 2010 Solar Prices and Projected 2020 Solar Prices (2010\$/W)

Technology/Market	Benchmark 2010 Price	Reference 2020 Price	SunShot 2020 Price
Utility-Scale PV (\$/W _{DC})	4.00	2.51	1.00
Commercial Rooftop PV (\$/W _{DC})	5.00	3.36	1.25
Residential Rooftop PV (\$/W _{DC})	6.00	3.78	1.50
CSP (\$/W _{AC})	7.20 ^a	6.64 ^a	3.60 ^b

a CSP system with 6 hours of thermal storage

^b CSP system with 14 hours of thermal storage


Why Large Drop in Prices?

- Solar Panels from \$5.00 per watt to \$1.00
 - China has made large investment
 - Is this dumping? Will tariffs be added?
 - Major opportunity for United States
 - 25 years of free energy at bargain price
 - Lots of jobs installing systems
 - Rare materials are from China (indium, selenium)
 - If tariffs added, will production move to Mexico?
- Inverters only minor drop in price
 - Not as much competition
- Installation only minor drop
 - Multiple installations will help

If the Tariff holds at 250%

Swanson House Solar Power Report							
	System 1	5KW	System 2	5KW	250% Tar	iff 5KW	
Installation Date	October 2009		January :	January 2012		January 2013	
System List Price		\$41,500		\$14,500		\$22,500	
Federal Tax Credit (30%)	\$12,450		\$4,350		\$6,750		
Florida Solar Rebate	\$10,437		\$0		\$0		
Net Cost		\$18,613		\$10,150		\$15,750	
Average Yearly Generation		8,795		8,795		8,795	
DC-AC Conversion Efficiency (est.)		0.90		0.90		0.90	
SECO Electric Charge (per KWH)		\$0.11		\$0.11		\$0.11	
Average Yearly Savings		\$869		\$869		\$869	
Return / Investment		4.7%		8.6%		5.5%	
Tax Bracket		35%		35%		35%	
After tax Annuity		7.2%		13.2%		8.5%	

Breakdown of Current Price

What is Net Metering?

- If you are generating more than you need
 - Utility buys excess at current price
- If you need more than you are generating
 - You buy from utility at current price
- Eliminates the need for local storage
 - Batteries are expensive
- Net metering is the law in Florida
- "Behind the meter"
 - Priced at the meter, the highest electricity price

Solar Assistance Programs

- Federal Tax Credit (30% to 2016)
- Rebates
 - State (not in Florida any more)
 - Local (none available)
- Renewable Portfolio Standard (RPS) (not in FL)
 - State set required renewable percentage
 - Creates Solar Renewable Energy Credits (SREC)
- Feed-in Tariff (FIT) (Local utility, rare)
 - Payment per Kwh produced for next xx years
- State sales tax exemption (yes in Florida)
- Property Tax Exemption (not in Florida)

Advantages of PV Solar Power

- Produced at point of use
 - No utility network loads
 - No large distribution lines needed
- Environment effects
 - No CO2 production
 - Reduces individual Carbon Footprint
- Improved United States energy independence
 - Zero fuel cost

Other Factors

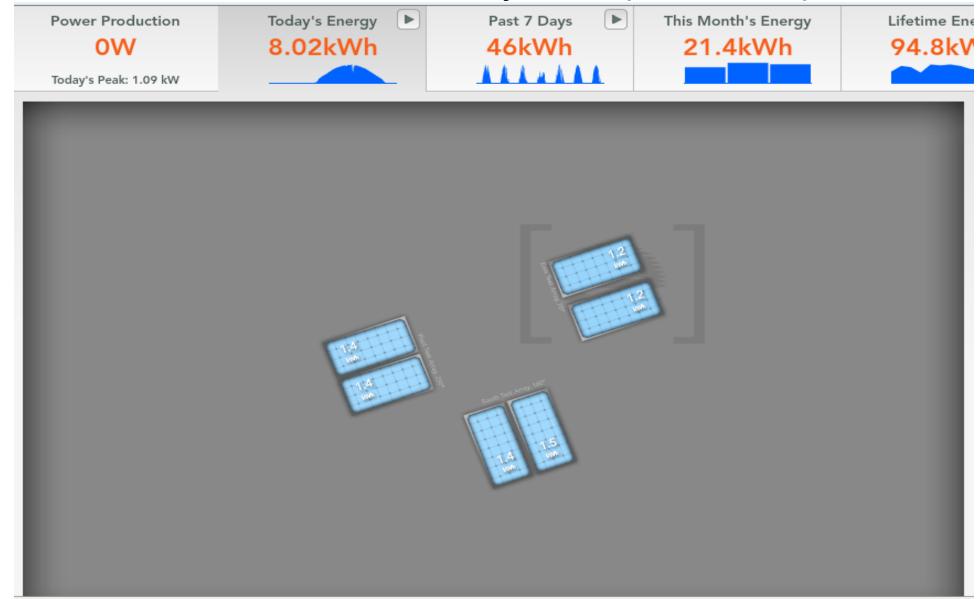
- How much will electric rates increase?
 - They only go up (Carbon charges?)
 - Compare with marginal (highest) electrical rate
 - Higher usage is not more expensive here
- How much will tax rates increase?
 - They only go up
- How does PV effect property value?
 - Appraisal's Journal showed \$20,000 increase for every \$1,000 per year saved in electricity
 - This is enough to pay for the system
 - Still valid with current system pricing?
- How about inflation?
 - Better to own things than money during inflation

Top 10 States for PV (2011)

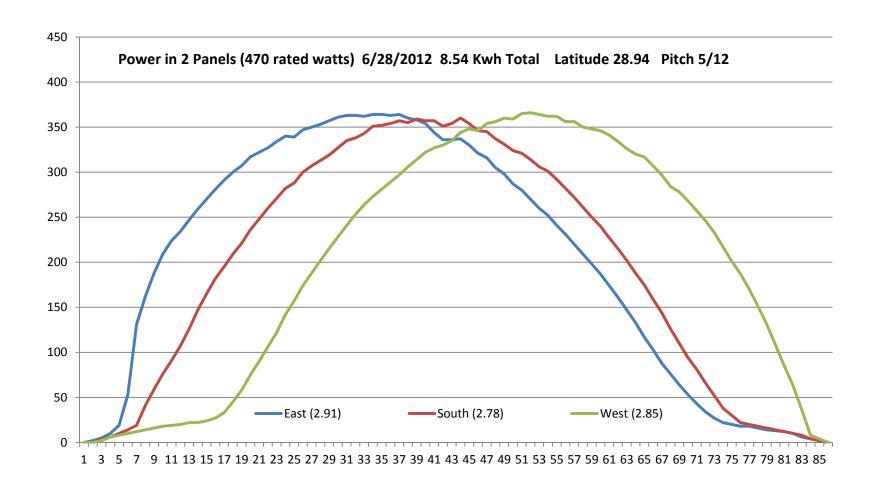
- California (542 Mw)
- New Jersey (313 Mw)
- Arizona (273 Mw)
- New Mexico (116 Mw)
- Colorado (91 Mw)
- Pennsylvania (88 Mw)
- New York (60 Mw)
- North Carolina (55 Mw)
- Texas (47 Mw)
- Nevada (44 Mw)
- Where is Florida, "The Solar Power State"

What is Government Role Now?

- Federal
 - Maintain 30% credit until end of 2016
 - Ramp credit down until 2020
- State (FL)
 - Net metering (done in FL)
 - Enhance net metering for commercial installs
 - Buyback at residential rate (current marginal rate)
 - Sales tax exemption (done in FL)
 - Add Property tax exemption
 - Publicity and education
 - Disallow restrictive covenants (done in FL)


Government Role (continued)

- Local Governments
 - Simplify licensing and inspections
 - Remote licensing over internet (reduce travel time)
 - Single final inspection, 2 hour window
 - Standard code requirements
- Utilities
 - Simple net metering application (SECO ok)
 - Dual meters on a timely basis (SECO ok)
 - Allow more than 100% generation


Swanson Directional Test

 The following slides show the three directional test being run on the Swanson garage

Directional Layout (4/4/12)

Directional Performance 6/28/12

Shift of Power Curves

- East (70 degrees) peaks at 11:05 am
- South (160 degrees) peaks at 12:30 pm
- West (250 degrees) peaks at 1:55 pm
- This will be important in the future for load balancing

Solar Power at Pitt

- University of Pittsburgh
 - Swanson School of Engineering
- Solar power laboratory
- Panel setup
 - East, South, West
 - 25 degrees, 45 degrees (maximum rack)
 - 3 panels in each configuration
 - 2 panel suppliers (240 watt panels)

Showing two panels, sunshine

Adam, John, and team

For Information Regarding Access to the Benedum Hall Roof contact

Donald C. Shields
Executive Director -- Center for Energy
dcs23@pitt.edu
412-624-8120

Summary

- Residential/commercial PV Solar Power is ready for wide application
 - Cost effective if:
 - Behind the meter
 - Net metering is available
 - Electric Marginal Cost > \$0.10 per watt
- Solar Hot Water is good, and price should come down
- Questions?