UNIVERSITY OF PITTSBURGH SWANSON school of engineering **Power & Energy Initiative**

Design and Simulation of a DC Electric Vehicle Charging Station Connected to a MVDC Infrastructure Graduate Student Researchers: Adam R. Sparacino and Brandon M. Grainger

Objectives of Research

- ✓ Investigate operation, interaction, and system integration of power electronic conversion devices, battery energy storage systems, and DC power systems.
- ✓ Evaluate operation of common DC bus electric vehicle charging station (EVCS) employing level 2 DC fast chargers powered via MVDC grid.
- ✓ Benchmark applicability of bidirectional DC-DC converter as an interface between medium and low voltage networks within next generation DC power systems.

Installed Electric Vehicle Charging Station (C. S. CCJ Digital. (2011). Eaton Research Facility Adds EV Charging Stations)

Medium Voltage DC Concept and Modeled Systems

Academic Advisor: Dr. Gregory F. Reed

Renewable Generation Modeling

MVDC Wind Turbine System

- ✓ Experimentally Validated Aerodynamic Model
- ✓ Permanent Magnet Synchronous Generator
- Back-to-Back Neutral Point Clamped Converter Interface

10 15

Voltage (V)

Bidirectional DC-DC Converter

Example Pulsed Charge Battery on Electric Vehicle)

System Operation, Validation, and Transient Behavior

Bidirectional Converter

PV Array

Process	Stated
Wind turbines begin '	(A) – 0.00 s
MVDC grid connected	(B) – 0.50 s
PV array ON	(C) – 0.61 s
PV array OF	(D) – 1.00 s
EV bat 1 begins ch	(E) – 1.15 s
PV array ON	(F) – 1.20 s
EV bat 2 begins ch	(G) – 1.35 s
PV array OF	(H) – 1.75 s
EV battery 2 stops of	(I) – 1.90 s

Component Supplied and Absorbed Power

Non-Interconnected

Interconnected

