

Investigating Mode Transitions & Power Management in Medium Voltage DC Networks

Graduate Student Researcher: Brandon M. Grainger Academic Advisors: Dr. Gregory Reed and Dr. Thomas McDermott

Microgrid Development Needs

Fundamental Requirements of Microgrids

- Capability of Operating in <u>Islanding</u> and/or <u>Grid</u> Connected Modes with High Stability.
- Mode switching with minimum load disruption and shedding during transitions.
- After a transition, stabilize in a certain amount of time.

Technical Challenges of Microgrids

- Operation modes and transitions that comply with IEEE 1547.
- Control architecture and communication

Research Challenges of Microgrids

- Operational inverter improvements (harsh environment design, robust operation during fault conditions, volume and weight reduction).
- Integrated storage inverter & direct medium voltage inverter design.
- <u>DC</u> microgrid subsystems.
- Protection is also one of the most important challenges facing the deployment of microgrids.

Offshore Wind Generation Trends

■ The U.S. Department of Energy, through FOA-414, has found great interest in exploring the integration of offshore wind and has funded a team (including Pitt) to determine the optimal location for placing large wind turbines around the U.S. perimeter.

■ The directions that many manufacturers are exploring with offshore technologies to harness and transmit electric power provides further encouragement that the direction towards offshore is viable.

Industrial Facility: Offshore Oil Drilling Platform

- Industrial facilities, like the oil platforms, experience three major types of power quality obstacles.
- ✓ Voltage Sags are caused by motor starting, short circuits, fast reclosing of circuit breakers. Issues interrupt adjustable speed drives which are the sensitive loads in the facility.
- ✓ **Transient Overvoltages** are caused by energizing filter banks and transformers.
- ✓ Dynamic Overvoltages are a result of resonant system effects due to transformer energizing (duration is longer)
- Power quality is degraded due to harmonic currents produced during the *conversion from AC to DC* for VFDs.
- Mitigation techniques include active and passive filters and multi-pulse drives requiring additional space and increased platform weight.

Innovation and Creativity with DC Backbone

- The off-shore oil drilling platform is an opportunity for a more innovative application while taking advantage of the offshore wind turbine power generation locally.
- A voltage controlled DC backbone *might* minimize the harmonic current injections with one less power conversion stage seen by the VFDs.
- Mode transitions (adapted from Microgrids) in generation (Wind / Diesel Generator / Utility Feed) will need to be considered to supply seamless, continuous power to the platform.

Medium Voltage DC Concept: Theory to Application

General MVDC Concept

future generations and loads.

MVDC Backbones within **DC** Microgrids

■ General concept of DC collection system showing ■ Local wind power generation to serve offshore oil drilling platform with backup from utility feed and diesel generation.

Specific Application Obstacles Under Investigation

Transient Load Sharing in Mode Transitions

Power electronics supply majority the power during grid connected to islanded transition.

Handling Various Mode Transitions

Grid Connected to Islanding Grid Connected, Internal Fault Ride-Through Islanding to Grid Connected Grid Connected, Grid Fault Ride-Through

Parallel Converter Control Differences

Power Management Strategies Utilizing HVDC

