

Concurrent Technologies Corporation

Grid Technologies Panel 12 November 2013 Susan Van Scoyoc, PMP Director, Power & Energy Solutions

Pitt Electric Power Industry Conference

Copyright 2013 CTC. All rights reserved.

Who We Are

CTC's capabilities include: Advanced Engineering and Manufacturing; Environment and Sustainability; Intelligence, Information Technology and Security; Logistics, Management and Acquisition; Power and Energy; Readiness, Preparedness and Continuity; Safety and Occupational Health; and Special Missions.

Technology Transition is Our Goal

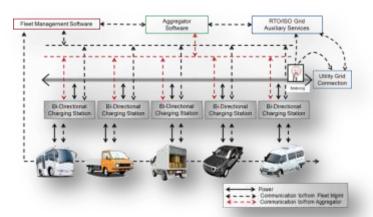

- **Trusted Partner**: 501(c)(3) nonprofit established in 1987
- Experience: 1,100+ professionals at more than 50 locations
- Excellence: Top 100 Government Contractor
- Certifications: SANS / CISSP / ISSEP / DODD 8570 compliant
- Facilities: Labs / Conference Centers / SCIF Space
- Secure Communications: JWICS / SIPRNET / NSANet / NGANet
- Quality Systems: ISO 9001 / ISO 14001 / AS9100 / CMMI-SE/SW

CTC has recently been named to the list of the World's most Ethical Companies by Ethisphere Institute, a leading international think-tank

Power & Energy

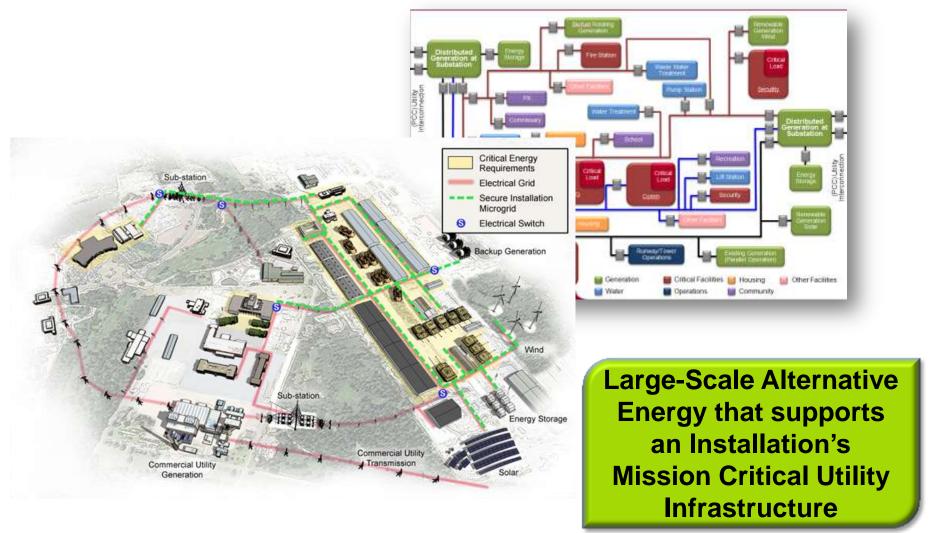
Innovation: Evolving Capabilities in Power and Energy

Power & Energy Services Power & Load Management Energy Supply & Management


Copyright 2013 CTC. All rights reserved.

Power & Energy Experience

- Energy Security Assessment and Conceptual Microgrid Design
- Army Net Zero Initiative
- Energy Policy/Analysis
- Army Energy Initiatives Task Force
- DOD PEV-V2G Initiative
- AFRL Technology RDT&E

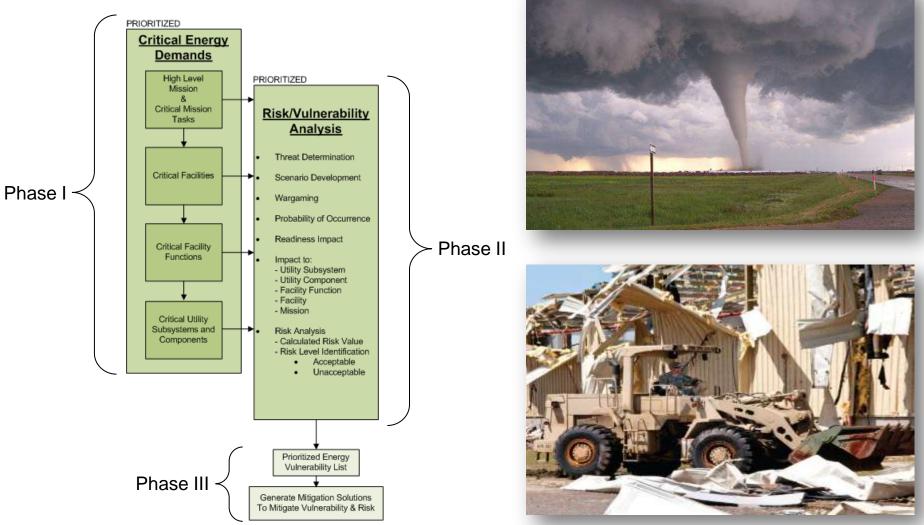


Copyright 2013 CTC. All rights reserved.

DoD Energy Security

What is the State of your Energy Security?

CTC Concurrent Technologies Corporation


- Are the critical missions and corresponding critical facilities identified?
- Are all the mission critical equipment connected to the auxiliary generators?
- Are your auxiliary generators capable of long-term continuous operation?
- Can the generation be grid connected and operate in parallel?
- Do you have large prime power generators on site? Are they connected to the distribution system?
- Can the installation distribution system be operated independently from the commercial electric utility supply?

ESA Methodology for the Army – Three Phases

Concurrent Technologies Corporation

Summarized Results from Phase I Prioritized Critical Energy Needs

Phase I*	ESA #1	ESA #2	ESA #3	ESA #4	ESA #5
Number of Missions Evaluated	12	20	6	13	16
Critical Tasks	13	19	6	19	18
Facilities	50	63	41	131	137
Facility Functions	64	146	123	146	172
SPFs	128	83	107	120	110

*Working with 3 other Army Installations in FY14

The decomposition of <u>critical missions</u> at each facility resulted in identifying SPFs, making site personnel aware of their <u>energy dependencies to</u> <u>accomplish missions</u>.

Decomposition

Mission and Infrastructure

Concurrent Technologies Corporation

Summarized Results from Phase II **Risk and Vulnerability Analysis** Risk and Vulnerability Assessmer

Phase II*	ESA #1	ESA #2	ESA #3	ESA #4	ESA #5
Threats Analyzed	6	16	16	15	23
Total Risks	456	415	645	236	983
Vulnerability	31	52	13	2	74
Concern	105	0	24	4	47
Observation	104	38	12	41	210
Findings	216	325	596	189	652
Unconventional Concerns	29	2	10	9	12

*Working with 3 other Army Installations in FY14

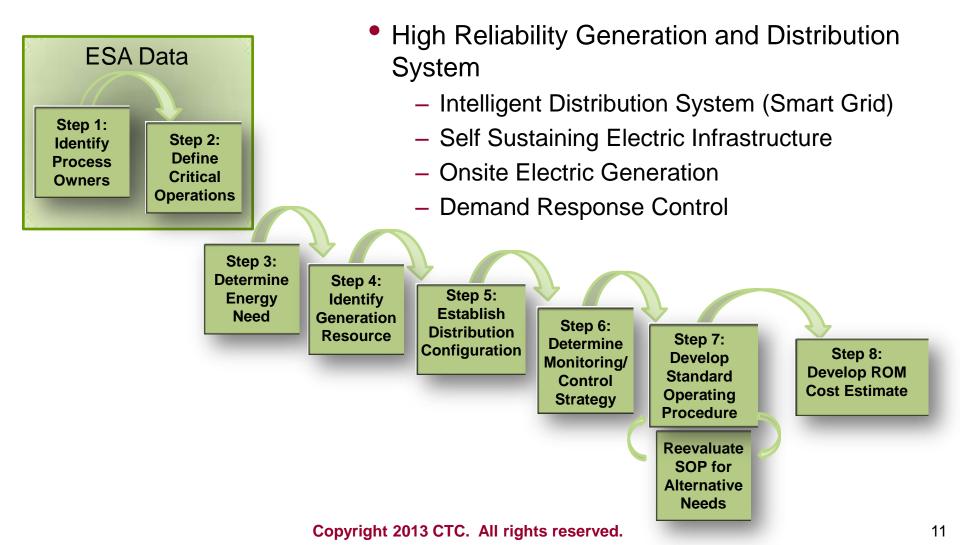
Phase II mathematically analyzes and <u>uncovers</u> plausible threats and their consequential risks to the mission. The qualitative/quantitative prioritization can be used as mitigation justification.

Summarized Results from Phase III ^{CTC} Potential Mitigation Solutions

Phase III*	ESA	ESA	ESA	ESA	ESA
	#1	#2	#3	#4	#5
Mitigation Solutions Identified	121	405	645	236	983

*Working with 3 other Army Installations in FY14

- Through prioritization and mission owner input, the ESA <u>identified weaknesses</u> in the existing energy security posture and provided <u>actionable</u> <u>solutions</u> for leadership to implement.
 - Determined multiple solutions with varying complexity and ROI
 - Provided solutions in a format that can be easily migrated to a form or template for recommended funding channels
 - Provided a decision point for installation leadership


Mission Related Project Justification

Concurrent

Technologies

Corporation

Mission Critical Utility Infrastructure Methodology *Planning as a Mitigation Solution*

Concurrent

Technologies Corporation

CTC

MCUI Conceptual Design

Missions are constantly changing

 Island concept can enable real-time changes to critical facilities supported based on mission cycles

Allows flexibility to provide service for Non-Critical Facilities

- Critical Missions not always dependent on energy
- Some facilities could be supported before critical operations depending on event

Completed 3 Army Installations Designs

 Currently working with 3 Army Installations

Conceptual Design Considerations

Critical Load (MW)

Installed Generation¹ (MW)

Available Generation¹ (MW)

Tiered Critical Buildings (#)

Total Cost (\$M)

- Distribution Upgrades (\$M)
- Engineering (\$M)
- Generation Equipment (\$M)

Recommended Fuel Storage (days)

¹ UFC mandates two backup generators (N+1) for prime power generating plants

Lessons Learned/Challenges

- On-site automation for outage data collection and analysis
- Open source interoperability between components and systems
- Specifications for systems
- Cyber secure solutions for data management
- Lack of auxiliary generators and/or required mission critical support equipment
- Decrease demand in critical facilities will lower generation requirements
- Interoperability of renewable energy systems to be grid-connected and grid independent
- UPS Standardization
- Grid-scale energy storage
- Low cost and less maintenance intensive solutions

For more information contact:

Susan Van Scoyoc, PMP Director, Power & Energy Solutions vanscoy@ctc.com (814) 269-2826