

U.S. Department of Energy National Energy Technology Laboratory **Regional University Alliance (NETL-RUA)**

The Grid Technologies Collaborative (GTC)

University of Pittsburgh Electric Power Industry Conference November 12, 2013

University of Pittsburgh UrginiaTech WestVirginiaUniversity

Regional University Alliance DOE NETL – National Energy Technology Lab

Owned and operated by the U.S. Department of Energy (DOE)

Part of DOE's national laboratory system

Implements a broad spectrum of energy and environmental R&D

Has expertise in energy technologies, contract and project management, analysis of energy systems, and international energy issues.

In addition to onsite research, NETL's project portfolio includes R&D conducted through partnerships, cooperative research and development agreements, financial assistance, and contractual arrangements with universities and the private sector.

These efforts focus a wealth of scientific and engineering talent on creating commercially viable solutions to national energy and environmental problems.

An applied research collaboration:

- **NETL's energy expertise**
- URS Corporation (a leading provider of engineering, construction and technical services for public agencies and private sector companies around the world)
- Five nationally recognized regional universities:
- Carnegie Mellon University (CMU) Pennsylvania State University (PSU) The University of Pittsburgh (Pitt) Virginia Tech (VT) West Virginia University (WVU).
- Leverages facilities, equipment, professional staff, and other resources
- Accelerates the development and deployment of innovative energy and environmental technology
- The commercialization of these technologies invigorates the economy with new high-tech and manufacturing jobs jobs that are well-suited for the skilled workforce that results from engagement in the cutting-edge, collaborative research of the RUA.

The NETL-RUA Grid Technologies Collaborative (GTC)

- Established to support the advancement of key power grid technology developments for both legacy and future grid systems
- RUA Institutions: Universities CMU, PITT, PSU, VA Tech, WVU; and DOE NETL, UEP, URS Corp.

GTC Formation

Overview, History, and Status

- Originated from NETL Strategic Growth Area (SGA) initiatives workshop – May 2011
- Selected as one of two SGA's for NETL support in 2012
- Formally established with seed funding in August 2012
- Group consists of 23 faculty and graduate student researchers from the five RUA universities and personnel from NETL, URS, and UEP
- Initial R&D project effort entitled:
 - The Next Generation Power Converter: Applications for Enhanced T&D Grid Performance and Energy Resource Integration
 - Benefits and outcomes: creating opportunities for faculty and graduate student researchers; expanding the capabilities and breadth of NETL's research portfolio; engaging industry in technology development and regional growth

GTC Leadership Team

Steering Committee Members
•GTC Lead: Gregory Reed – University of Pittsburgh
•Program Development: Wayne Honath – UEP>
•Steering Committee:
Steven Bossart – DOE NETL
Keith Dodrill – DOE NETL
Paul Ohodnicki – DOE NETL
Gabriela Hug – Carnegie Mellon University
Seth Blumsack– Penn State University
Dushan Boroyevich – Virginia Tech
Parviz Famouri – West Virginia University
Janet Nelson – URS Corporation

GTC Mission Statement

The GTC's Mission is to become a world leader in the development, demonstration and applications of Grid-Scale Power Electronics Devices and Systems

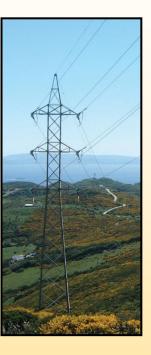
The GTC Vision is the realization of an advanced electricity transmission and distribution network that:

- Is efficient, flexible, reliable, and resilient to disruptions and other contingency events on the power grid
- Changes being made remotely clean energy generation resources, energy storage capacity, and alternate operational concepts
- Delivers the most suitable forms of electricity in the most economic manner to end-users and enables greater levels of consumer participation

Fundamental Activities

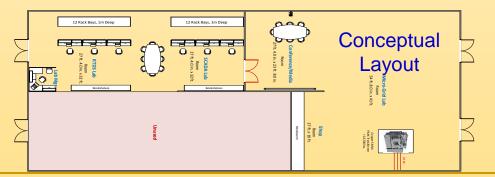
The GTC engages in three fundamental activities:

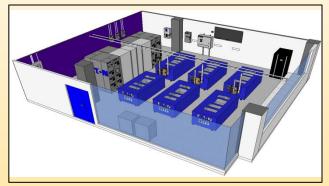
- 1) <u>Developing new grid-scale power electronics devices</u> for emerging AC and DC electrical infrastructure, supporting systems and algorithms, and demonstrating their technical and economic value proposition
- 2) <u>Educating the next generation</u> of power electronics engineers through advanced curricula at member universities and training programs for existing professionals
- 3) Partnering with industry and the public sector to advance the state-of-the-art of technology and demonstrate the benefits of advanced power electronics through collaborative research and development, seminars, and workshops

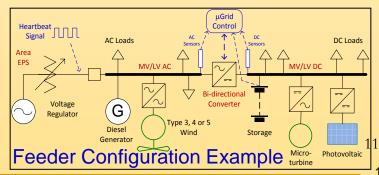

Core R&D Focus Areas

The core R&D focus areas of the GTC include:

- Modeling, simulation, and analysis
- Power semiconductors and materials development
- Circuit and device design, integration, and topologies
- Advanced control, systems interface, and protection
- Testing and turnkey systems integration
- Deployment and operations


Example Facilities and Lab Capabilities


NETL – AVESTAR[™] IGCC Immersive Training System



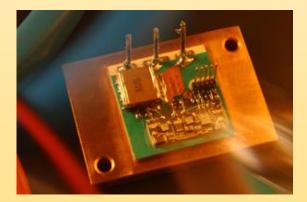
PITT – ELECTRIC POWER SYSEMS and TECHNOLOGIES LABS

- EPSL Benedum Hall, 2013 opening
 - Low voltage power, micro-grid, power electronics, etc..
- EPTL Off-campus RD&D facility (2014/2015)
 - Planning for medium voltage facility
 - 15 kV-ac, 5 MVA -and- 1 kV-dc, 1 MVA capacity
 - Distribution Feeder Infrastructure
 - Resource and Load Integration (u-Grid at Dist. Level)
 - Renewables, Storage, EV, Power, Electronics, etc. RTDS, Relaying, Automation, Control, Communications

Example Facilities and Lab Capabilities

PSU – GridSTAR

Philadelphia Navy Yard


- Net zero energy
- Building level and distribution system facilities
- Technology testing demonstration

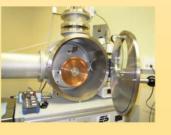
VATech – Center for Power Electronics Systems (CPES)

- dedicated to improving electrical power processing and distribution that impact systems of all sizes – from battery-operated electronics to vehicles to regional and national electrical distribution system

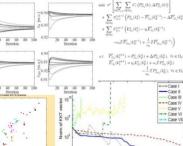
Example Facilities and Lab Capabilities

WVU – Electric Power Systems Lab and Simulators

- Complete AVESTAR platform with IGCC Dynamic Simulator
- Electric Power and Electro-Mechanical Systems lab
 - 15kW: 150V DC; 15kVA: 120/230 60Hz generation
 - 6 load centers 12 wire distribution with $110/230V 1-\phi/3-\phi$ availability
 - Fully meter-equipped power benches with AC variable frequency & DC drives
 - 5kVA Inverter for DG applications and various type dynamometers and MG sets
 - dSpace/LabView real-time data acquisition and control systems
 - Yokogawa 3/4-wire power acquisition harmonic analyzers
- Hampden Power System Simulator
 - Low voltage electric generation-transmission-distribution-load simulator


CMU – Smart Controls and Materials Lab

- Power Systems Group
- Smart Controls and Optimization Techniques for Improved Operation of the Power Grid
- Simulation Based
- Magnetic Materials Lab
- Electron Microscopy Facility
- Magnetic Properties of Materials
- Rapid Solidification
- Synthesis Lab



Next Generation Power Electronics Converter Development

- •Utility T&D scale advanced power electronics converter design and development for FACTS and DC based applications
- •A key interface to power grid modernization and advancement
- •Efficient, bidirectional connection and control interfaces
- Initial applications at utility-scale distribution level
- •Control concepts and interfaces extended to transmission system level and applications
- Initial focus areas:
 - Renewable/Clean energy integration
 - Energy storage interconnection
 - Traditional and emerging AC and DC loads
 - Hybrid AC/DC System Architectures
- 2012 Results Published in the GTC R&D Progress Report (Feb. '13)

R&D Project Tasks/Deliverables

R&D Project – Next Generation Power Electronics Converter Development Task Breakdowns and Deliverables

System Level Modeling

- Develop models of either AEP distribution or Philadelphia Navy Yard in MATLAB/Simulink and PSCAD platforms
- Develop models and perform initial laboratory testing of distributed generator converters
- Journal publication on inverter model and testing

Converter Topology Design

- Transition MATLAB/Simulink models of converter design to PSCAD
- Expand research on low frequency dynamic interactions
- Design hybrid AC/DC test bed

Smart Control Methodology

- Develop multi-time scale control of storage devices
- Develop method to determine optimal sizing of converter and storage, and optimal location
- Advanced converter materials and devices

Interface & Communication Protocols

- Develop and test network estimation strategies
- Identify and test required DNP3 and IEC61850 features
- Study interactions of communications and network estimation; study vulnerabilities and their mitigation

Demonstration Site Plan and Development

- Navy Yard micro-grid data for modeling
- Multi-scale transmission and distribution modeling and optimization
- Production cost modeling

Simulation Platform Development

- Program support for the AVESTAR simulator development of the base case T&D grid and control topology
- Direct support/input for development of NETL in-house R&D program for GTC efforts

GTC 2013 Highlights

Proposals for Grid Research Projects

- To date, 11 projects have been funded for a total of \$2.4 Million
- An additional 7 projects, totaling \$7.8 Million are pending
- **Grid Research Publications and Presentations**
 - GTC members have published or presented 22 papers on grid technology research
 - An additional 5 papers have been accepted, and 4 more are under review
- **Coordinating Efforts with DOE Grid Tech Team (GTT)**
- **Strategize on Growth and Continued Collaborations**
- **Continued Industry Outreach**
- **Establish Industry Partnership Program**

GTC First Annual National Conference

June 10, 2013 – Arlington, VA

17

8TH ANNUAL PITT ELECTRIC POWER INDUSTRY CONFERENCE Presented by the Swenson School of Engineering & the Center for Energy

2013 Univ. of Pittsburgh EPIC November 11-12, 2013 Pitt University Club

2013 EPIC Highlights (Advancing Grid Technologies- from Macro to Micro):

- MONDAY 11/11:
- Keynote Speakers and Special Guests:
 - Chancellor Nordenberg
 - Patricia Hoffman (U.S. DOE), Ravaithi Advaithi (EATON)
- Electric Power Graduate Student Research Symposium and Poster Session
- Electric Power Systems Lab Tours
- Corporate Exhibits and Student Networking Session Monday Evening
- TUESDAY 11/12:
 - DOE Grid Technologies Collaborative Workshop
 - Microgrid Panel / Live Webinar
- Industry Representation and Invited Speakers
 - ABB, Altsom Grid, American Electric Power, Concurrent Technologies, Dominion Virginia Power, EATON, Elster, Emerson Process Management, FirstEnergy, Mitsubishi Electric, NIST, NRECA, Pitt-Ohio Express, RAND Corp., Siemens Energy, John A. Swanson, U.S. Dept. of Energy, ...

2013 Univ. of Pittsburgh EPIC GTC Workshop November 12, 2013

Following up on the GTC National Conference in June

- Five guests who attended the GTC conference are serving as our panelists this morning
- Each will discuss their organization's interest in grid technologies,
- Each will provide their perspective on opportunities or gaps in areas of grid research