Pitt | Swanson Engineering

The Chemical and Petroleum Engineering department at the University of Pittsburgh Swanson School of Engineering was established in 1910, making it the first department for petroleum engineering in the world. Today, our department has over 40 expert faculty (tenure/tenure-stream/joint/adjunct), a host of dedicated staff, more than 20 state-of-the-art laboratories and learning centers, and education programs that enrich with strong fundamentals and hands-on experience.

Chemical engineering is concerned with processes in which matter and energy undergo change. The range of concerns is so broad that the chemical engineering graduate is prepared for a variety of interesting and challenging employment opportunities.

Chemical engineers with strong background in sciences are found in management, design, operations, and research. Chemical engineers are employed in almost all industries, including food, polymers, chemicals, pharmaceutical, petroleum, medical, materials, and electronics. Since solutions to energy, environmental, and food problems must surely involve chemical changes, there will be continued demands for chemical engineers in the future.

Mar
22
2017

The Swanson School Presents Alumna Donna Blackmond with 2017 Distinguished Alumni Award for Chemical and Petroleum Engineering

Chemical & Petroleum

PITTSBURGH (March 22, 2017) … Collectively they are professors, researchers and authors; inventors, builders and producers; business leaders, entrepreneurs and industry pioneers. The 53rd annual Distinguished Alumni Banquet brought together honorees from each of the Swanson School of Engineering’s six departments and one overall honoree to represent the entire school. The banquet took place at the University of Pittsburgh's Alumni Hall, and Gerald D. Holder, US Steel Dean of Engineering, presented the awards.This year’s recipient for the Department of Chemical and Petroleum Engineering was Donna G. Blackmond, PhD, BSCHE ’80, MSCHE ’81, Professor of Chemistry, Scripps Research Institute.“Many of us here tonight, myself included, remember Donna as an outstanding student and researcher, and have followed her many accomplishments while making a major impact with her research,” said Dean Holder. “She is a pioneer of Reaction Progress Kinetic Analysis, and her research into prebiotic chemistry and asymmetric catalytic reactions is recognized worldwide.”About Donna BlackmondDonna G. Blackmond received BS and MS degrees in chemical engineering from the University of Pittsburgh in 1980 and 1981, respectively. She received a PhD degree in chemical engineering from Carnegie Mellon University in 1984. Blackmond started her career as an assistant professor of chemical engineering at the University of Pittsburgh in 1984 and was promoted to associate professor in 1989. She has held professorships in chemical engineering and in organic, physical, and technical chemistry in the US, Germany and the UK, and she has worked in the pharmaceutical industry as an associate director at Merck & Co., Inc. In 2010 she moved from a joint research chair in chemistry and chemical engineering at Imperial College London to her present position as professor of chemistry at The Scripps Research Institute in La Jolla, California. Blackmond’s research focuses on kinetic, mechanistic and reaction engineering studies of organic reactions for pharmaceutical applications, including asymmetric catalysis. She has been invited to give her short course on Kinetics of Organic Catalytic Reactions in academia (including Harvard, Berkeley, Zürich, Nagoya) and at major pharmaceutical companies around the world. Blackmond also carries out fundamental studies probing the origin of the single chirality of biological molecules. She was invited by the Royal Swedish Academy of Sciences to speak at a Nobel Workshop “On the Origin of Life” in Stockholm (2006). In 2012 she was named a Simons Investigator in the Simons Foundation Collaboration on the Origins of Life. ### Photo Above: Dean Holder (left) with Donna Blackmond and ChemE Department Chair Steven Little.
Matt Cichowicz, Communications Writer
Mar
22
2017

Chemical Engineering PhD Candidate Natalie Austin Invited to 67th Nobel Laureate Meeting on Chemistry

Chemical & Petroleum

PITTSBURGH, PA (March 22, 2017) … Natalie Austin, a PhD candidate in the Swanson School of Engineering’s Department of Chemical and Petroleum Engineering, will participate in the 67th Nobel Laureate Meeting in Lindau, Germany this June. Austin will join an elite group of 400 – 500 international undergraduates, graduate students and post-doctoral researchers, who qualified for attendance after a multistage selection process.Between 30 – 40 Nobel Laureates will also attend the meeting and interact with the next generation of scientists primed to make significant contributions to their fields. Each year the meeting focuses on one of the three natural sciences eligible for a Nobel Prize: chemistry, physics and physiology/medicine. This year’s topic of chemistry will be addressed and analyzed through lectures, discussion, master classes and panels.Austin, who works in the Computer-Aided Nano and Energy Lab (CANELA) at Pitt, was one of two Pitt students selected to apply to the program. She qualified nationally as part of the Oak Ridge Associates Universities team and then passed through an international selection pool ranging from undergraduate to post-doctoral students below the age of 35.“Attending the meeting held at Lindau is important to me,” said Austin. “I will have the opportunity to meet with the most successful and respected researchers in my field and beyond. More so, I believe that the interactions and networking opportunities provided at Lindau will be enriching to me, as well as inspire and motivate me as I move towards completing my graduate education and research.”  Austin’s research at CANELA focuses on the computational design of bimetallic nanoparticles, which can absorb, activate and convert carbon dioxide into useful chemicals and fuels. Monometallic copper is commonly used as a catalyst for carbon dioxide conversion, but studies have shown enhanced activity on copper-based bimetallic catalysts. Austin is currently investigating both the physicochemical properties of the catalysts and the mechanism of carbon dioxide conversion to methanol, an alternative fuel source to gasoline in internal combustion engines.Austin received her bachelor’s degree in chemical engineering/bioengineering from the University of Maryland, Baltimore County in 2013 and will defend her doctoral thesis in May 2018. After graduation, Austin said she would like to begin a career in energy and environmental research for the government or in an industrial setting. “I am personally very proud of Natalie and of what she has accomplished so far,” said Giannis Mpourmpakis, assistant professor of chemical and petroleum engineering at Pitt and principal investigator at CANELA. “Having participated in this meeting in the past, I know how competitive the selection process is and how beneficial this experience will be for her future career.” ###
Matt Cichowicz, Communications Writer
Mar
20
2017

Penn biointerface researcher and entrepreneur Tagbo Niepa to join Pitt’s Department of Chemical and Petroleum Engineering

Chemical & Petroleum

PITTSBURGH (March 20, 2017) … Further strengthening its focus on interdisciplinary research and entrepreneurship, the Department of Chemical and Petroleum Engineering at the University of Pittsburgh’s Swanson School of Engineering has hired Tagbo H.R. Niepa, PhD as assistant professor. Dr. Niepa, currently the Postdoctoral Fellow for Academic Diversity at the University of Pennsylvania Department of Chemical and Biomolecular Engineering with Professors Daeyeon Lee and Kathleen Stebe, will join Pitt in July 2017.“Tagbo’s expertise in biofilms, microfluidics and interfacial science is an outstanding addition to our department,” said Steven R. Little, PhD, Department Chair and William Kepler Whiteford Professor of Chemical and Petroleum Engineering. “He is young researcher who is gaining a national reputation for his bacterial research, and his experience as an entrepreneur with his own successful startup will be a tremendous asset and inspiration to our students.”“Many lifesaving medical innovations have emerged from the University of Pittsburgh,” added Dr. Niepa. “I am very excited to join Pitt’s Department Chemical and Petroleum Engineering. The multidisciplinary environment at Pitt is conducive for me to make unique contributions to diverse fields ranging from biomedical, to food and environmental sciences. "I envision developing microbial-based methods of oil recovery, and technologies having applications for biotechnology and personalized therapeutics. My hope is to share my vision of entrepreneurship as an alternative approach to disseminating research results with students as they explore opportunities outside of academia or industry.”Dr. Niepa currently focuses on interfacial phenomena associated with bacterial films and is developing artificial microniches to model microbiome dynamics as well as microbial communities relevant to antibiotic discovery. His research also seeks to understand how beneficial microbes could be used to better clean the environment after an oil spill and how pathogens could be prevented from causing disease. He earned an associate degree in food science at the Food Industry College (Ivory Coast) and worked at the Pasteur Institute as a research associate, before transferring to University of Dortmund (Germany) to study bioengineering. He later earned a BS in biomedical engineering and PhD in chemical engineering from Syracuse University. His doctoral research on the electrochemical control of bacterial persister cells revealed new means to control the electrophysiology of highly drug-tolerant bacterial cells and sensitize pathogenic persister and biofilm cells to antibiotics. His technology was tested successfully for safety on human cells and for efficacy in curing a rabbit model of sinusitis, and was awarded two U.S. patents and recognized by Syracuse University with the All-University Doctoral Prize. Dr. Niepa is a co-founder of Helios Innovative Technologies Inc. (now PurpleSun Inc.), a medical device company that develops automated sterilization systems to fight bacterial cross-contamination.About the Department of Chemical and Petroleum EngineeringThe Department of Chemical and Petroleum Engineering serves undergraduate and graduate engineering students, the University and our industry, through education, research, and participation in professional organizations and regional/national initiatives. Our commitment to the future of the chemical process industry drives the development of educational and research programs. The Department has a tradition of excellence in education and research, evidenced by recent national awards including numerous NSF CAREER Awards (including three in Q1 2017), a Beckman Young Investigator Award, an NIH Director's New Innovator Award, and the DOE Hydrogen Program R&D Award, among others. Active areas of research in the Department include Biological and Biomedical Systems; Energy and Sustainability; and Materials Modeling and Design. The faculty has a record of success in obtaining research funding such that the Department ranks within the top 25 U.S. chemical engineering departments for federal R&D spending in recent years with annual research expenditures exceeding $7 million. The vibrant research culture within the Department includes active collaboration with the adjacent University of Pittsburgh Medical Center, the Center for Simulation and Modeling, the McGowan Institute for Regenerative Medicine, the Mascaro Center for Sustainable Innovation, the Petersen Institute of NanoScience and Engineering and the U.S. DOE-affiliated Institute for Advanced Energy Solutions. ###

Mar
8
2017

Five Pitt engineering faculty set university and school record by receiving competitive NSF CAREER awards in first months of 2017

Chemical & Petroleum, Civil & Environmental, Electrical & Computer

PITTSBURGH (March 8, 2017) … The National Science Foundation CAREER award is the organization’s most coveted and competitive research prize for junior faculty, and in the first few months of 2017, the University of Pittsburgh’s Swanson School of Engineering has been awarded five CAREER grants totaling more than $2.5 million in research funding. The CAREER program “recognizes faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations.” The five awards – three in Chemical and Petroleum Engineering, and one each in Civil and Environmental and Electrical and Computer – are the most received by Pitt and Swanson School faculty in a single NSF CAREER funding announcement. The three Chemical and Petroleum Engineering CAREER awards also represent the most received by a single department within the Swanson School. The faculty applied for the awards during the NSF’s 2016 solicitation period.“This is a tremendous accomplishment for our faculty, and will greatly assist them in establishing their research at this early stage of their academic careers,” noted Gerald D. Holder, U.S. Steel Dean of Engineering and Distinguished Service Professor at Pitt. “This is the first time that five individuals at the Swanson School received CAREER awards in one year, which speaks to the caliber of their research.” David Vorp, the Swanson School’s Associate Dean for Research and John A. Swanson Professor of Bioengineering, added, “Research funding at the federal level grows tighter and more competitive each year, and so we’re very proud that these five outstanding faculty members developed such strong proposals. Most importantly, the CAREER awards include a community engagement component which is critical to inspiring future STEM careers in children and young adults.” The award recipients include: Department of Chemical and Petroleum Engineering John Keith, Inaugural R.K. Mellon Faculty Fellow in Energy and Assistant Professor ($500,000)Title: SusChEM: Unlocking local solvation environments for energetically efficient hydrogenations with quantum chemistry (#1653392)Summary: This project will address the production of carbon-neutral liquid fuels via electrocatalytic reduction of carbon dioxide (CO2) to methanol.  Its focus will integrate high-level electronic structure theory, molecular dynamics, and machine learning to understand how interactions between solvent molecules, salts, and co-solutes regulate CO2 reduction from greenhouse gas into fuels. The graduate and undergraduate students in Dr. Keith's lab group will also develop educational modules to engage and excite students in the Pittsburgh Public School District about opportunities in STEM fields, with an emphasis on renewable energy and computational chemistry. Giannis (Yanni) Mpourmpakis, Assistant Professor ($500,000)Title: Designing synthesizable, ligand-protected bimetallic nanoparticles and modernizing engineering curriculum through computational nanoscience (#1652694)Summary: Although scientists can chemically synthesize metal nanoparticles (NPs) of different shapes and sizes, understanding of NP growth mechanisms affecting their final morphology and associated properties is limited. With the potential for NPs to impact fields from energy to medicine and the environment, determining with computer simulations the NP growth mechanisms and morphologies that can be synthesized in the lab is critical to advance NP application. Because this is a relatively new field, traditional core courses in science and engineering lack examples from the nanotechnology arena. In addition to improving the research, the award will enable Dr. Mpourmpakis and his lab group to modernize the traditional course of Chemical Thermodynamics by introducing animation material based on cutting-edge nanotechnology examples, and developing a nanoscale-inspired interactive computer game. Christopher Wilmer, Assistant Professor ($500,000)Title: Fundamental limits of physical adsorption in porous materials (#1653375)Summary: The development of new porous materials is critical to improving important gas storage and separations applications, and will have a positive impact on reducing greenhouse gases. This includes the deployment of methane and/or hydrogen gases as alternative fuels, development of new filters for removing trace gaseous contaminants from air, and separation of carbon dioxide from flue gas to mitigate greenhouse emissions from the burning of fossil fuels. Dr. Wilmer’s grant will enable his lab to utilize computational methods to probe the limits of material performance for physical adsorption to porous materials. Although past computational screening has suggested physical limits of adsorption capacity for metal-organic frameworks (MOFs), this project will explore the novel use of so-called “pseudomaterials,” which represent all potential atomistic arrangements of matter in a porous material. As part of community outreach, Dr. Wilmer’s research group will develop educational movies on the fundamental science of gas adsorption, including those relevant to carbon capture to mitigate climate change. Department of Civil and Environmental EngineeringKyle J. Bibby, Assistant Professor ($500,000)Title: Quantitative viral metagenomics for water quality assessment (#1653356)Summary: U.S. beaches and waterways often are closed to human contact when tests indicate an increase in E. coli, usually after heavy rains overwhelm sewage systems. However, the concentration of these common bacteria is not a reliable indicator of viruses in the water, which present a greater danger of causing illness in humans. Dr. Bibby’s research will focus on developing new DNA sequencing methods to directly measure viral loads in water and better indicate potential threats to human health. Dr. Bibby’s group, which previously studied persistence of the Ebola virus in the environment and has worked to develop novel indicators of viral contamination, will utilize quantitative viral metagenomics for viral water quality assessment. The CAREER Award includes an outreach component that allows Dr. Bibby to engage with students at the Pittsburgh Public School’s Science & Technology Academy (SciTech) next to the Swanson School, leading to development of a hands-on educational module for high school students to characterize microbial water quality. Dr. Bibby will also utilize the research to expand the H2Oh! interactive exhibit he developed with the Carnegie Science Center, enabling children to better understand the impact of water quality on everyday life. Department of Electrical & Computer EngineeringErvin Sejdić, Assistant Professor and 2016 PECASE Recipient ($549,139)Title: Advanced data analytics and high-resolution cervical auscultation can accurately predict dysphagia (#1652203)Summary: Dysphagia, or swallowing disorders, affects nearly one in 25 adults, especially the elderly and those who have suffered a stroke or neurological disease, and results in approximately 150,000 hospitalizations annually. A patient’s risk for dysphagia is diagnosed first by screening, and may require an endoscopy or fluoroscopy for further evaluation. However, some patients who aspirate do so silently, causing doctors to misdiagnose. Dr. Sejdić will utilize high-resolution vibration and sound recordings to develop a new screening technology to help doctors diagnose dysphagia and patients to learn how to properly swallow while eating or drinking. Dr. Sejdić and his lab group will also collaborate with speech language pathologists to develop an online learning module to further education and outreach throughout the U.S. ###

Mar
1
2017

NSF recognizes three Pitt junior chemical engineering faculty with prestigious CAREER awards

Chemical & Petroleum

PITTSBURGH (March 1, 2017) … For the first time in a funding cycle, three researchers from one University of Pittsburgh department were recognized with the National Science Foundation’s most significant award in support of junior faculty. John Keith, Giannis Mpourmpakis and Christopher Wilmer, all assistant professors of chemical and petroleum engineering at Pitt’s Swanson School of Engineering received individual NSF CAREER awards, which “recognize faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations.” The three professors received $500,000 each in funding for the five-year awards. “Receiving an NSF CAREER Award can be one of the most tremendous highlights for any junior faculty member, but it is a true honor for a university to receive three awards within one department,” noted Steven R. Little, the William Kepler Whiteford Professor and Department Chair of Chemical and Petroleum Engineering. “What’s more, these three researchers are focused on dynamic energy research, and these grants will not only benefit their labs, but also the students they teach and mentor. As an additional component, the grants will enable our students to engage in community outreach and encourage young adults to consider careers in STEM.” The Pitt Chemical and Petroleum Engineering CAREER Awards include: John A. Keith, Assistant Professor and Inaugural R.K. Mellon Faculty Fellow in Energy  SusChEM: Unlocking local solvation environments for energetically efficient hydrogenations with quantum chemistry (#1653392) Summary: This project will address the production of carbon-neutral liquid fuels via electrocatalytic reduction of carbon dioxide (CO2) to methanol.  Its focus will integrate high-level electronic structure theory, molecular dynamics, and machine learning to understand how interactions between solvent molecules, salts, and co-solutes regulate CO2 reduction from greenhouse gas into fuels. Dr. Keith’s graduate and undergraduate students will develop educational modules to engage and excite students in the Pittsburgh Public School District about opportunities in STEM fields, with an emphasis on renewable energy and computational chemistry. Giannis (Yanni) Mpourmpakis, Assistant ProfessorDesigning synthesizable, ligand-protected bimetallic nanoparticles and modernizing engineering curriculum through computational nanoscience (#1652694)Summary: Although scientists can chemically synthesize metal nanoparticles (NPs) of different shapes and sizes, understanding of NP growth mechanisms affecting their final morphology and associated properties is limited. With the potential for NPs to impact fields from energy to medicine and the environment, determining with computer simulations the NP growth mechanisms and morphologies that can be synthesized in the lab is critical to advance NP application. Because this is a relatively new field, traditional core courses in science and engineering lack examples from the nanotechnology arena. In addition to improving the research, the award will enable Dr. Mpourmpakis and his students to modernize the traditional course of Chemical Thermodynamics by introducing animation material based on cutting-edge nanotechnology examples, and developing a nanoscale-inspired interactive computer game. Christopher Wilmer, Assistant Professor Fundamental limits of physical adsorption in porous materials (#1653375) Summary: The development of new porous materials is critical to improving important gas storage and separations applications, and will have a positive impact on reducing greenhouse gases. This includes the deployment of methane and/or hydrogen gases as alternative fuels, development of new filters for removing trace gaseous contaminants from air, and separation of carbon dioxide from flue gas to mitigate greenhouse emissions from the burning of fossil fuels. Dr. Wilmer’s grant will enable his lab to utilize computational methods to probe the limits of material performance for physical adsorption to porous materials. Although past computational screening has suggested physical limits of adsorption capacity for metal-organic frameworks (MOFs), this project will explore the novel use of so-called “pseudomaterials,” which represent all potential atomistic arrangements of matter in a porous material. As part of community outreach, Dr. Wilmer’s research group to develop educational movies on the fundamental science of gas adsorption, including those relevant to carbon capture to mitigate climate change. ###

Upcoming Events


back
view more